论文标题

关于可以既可以进行游戏又可以改进的战略代理的分类

On classification of strategic agents who can both game and improve

论文作者

Ahmadi, Saba, Beyhaghi, Hedyeh, Blum, Avrim, Naggita, Keziah

论文摘要

在这项工作中,我们考虑可以既可以进行游戏又可以改进的代理商进行分类。例如,希望获得贷款的人们可能能够采取一些行动,以提高其信誉良好,而其他人也可以提高其真正的信誉。决策者希望用很少的假货(不会给出很多不良贷款)来定义分类规则,同时产生许多真正的积极因素(提供许多良好的贷款),其中包括鼓励代理人改善以便在可能的情况下改善真正的积极因素。我们考虑了这个问题的两个模型,一个通用的离散模型和一个线性模型,并证明了每个模型的算法,学习和硬度结果。对于一般离散模型,我们为最大化不受误报的真实阳性数量的问题提供了有效的算法,并显示如何将其扩展到部分信息信息学习设置。我们还表现出对最大程度地限制在误报数量的非零限制的真实阳性数量的问题,即使对于线性模型的有限点版本,这种硬度也存在。我们还表明,在我们的完整线性模型中,最大化的真实阳性数量是NP-HARD。我们还提供了一种算法,该算法确定是否存在线性分类器,该分类器准确地对所有试剂进行了分类,并导致所有可改进的代理变得合格,并为低维数据提供其他结果。

In this work, we consider classification of agents who can both game and improve. For example, people wishing to get a loan may be able to take some actions that increase their perceived credit-worthiness and others that also increase their true credit-worthiness. A decision-maker would like to define a classification rule with few false-positives (does not give out many bad loans) while yielding many true positives (giving out many good loans), which includes encouraging agents to improve to become true positives if possible. We consider two models for this problem, a general discrete model and a linear model, and prove algorithmic, learning, and hardness results for each. For the general discrete model, we give an efficient algorithm for the problem of maximizing the number of true positives subject to no false positives, and show how to extend this to a partial-information learning setting. We also show hardness for the problem of maximizing the number of true positives subject to a nonzero bound on the number of false positives, and that this hardness holds even for a finite-point version of our linear model. We also show that maximizing the number of true positives subject to no false positive is NP-hard in our full linear model. We additionally provide an algorithm that determines whether there exists a linear classifier that classifies all agents accurately and causes all improvable agents to become qualified, and give additional results for low-dimensional data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源