论文标题

关于离群值在保留损失方面的影响

On the impact of outliers in loss reserving

论文作者

Avanzi, Benjamin, Lavender, Mark, Taylor, Greg, Wong, Bernard

论文摘要

保留损失技术对数据或模型假设偏差的敏感性是一个众所周知的挑战。已经表明,流行的链条保留方法对这种异常观察的危险很大,因为在存在一个异常值的情况下,储备估算可能会大大变化。结果,链条磁通的保留技术是非持续的。在本文中,我们研究了储量和平方平方误差的敏感性(Mack,1993)。这是通过派生的影响函数来完成的,这些功能是通过将相关统计量的第一个衍生物相关的观察统计来计算而来的。当假定总储量是对数正态分布时,我们还提供并讨论分位数的影响功能。此外,根据Mack的模型和Bornhuetter-Ferguson方法进行了比较,对单个事故年度储量的影响功能进行了比较。结果表明,增量主张对这些感兴趣统计的影响在整个损失三角形中都有很大的不同,并且在很大程度上取决于三角形中的其他细胞。 使用比利时非生活保险公司的数据来说明结果。

The sensitivity of loss reserving techniques to outliers in the data or deviations from model assumptions is a well known challenge. It has been shown that the popular chain-ladder reserving approach is at significant risk to such aberrant observations in that reserve estimates can be significantly shifted in the presence of even one outlier. As a consequence the chain-ladder reserving technique is non-robust. In this paper we investigate the sensitivity of reserves and mean squared errors of prediction under Mack's Model (Mack, 1993). This is done through the derivation of impact functions which are calculated by taking the first derivative of the relevant statistic of interest with respect to an observation. We also provide and discuss the impact functions for quantiles when total reserves are assumed to be lognormally distributed. Additionally, comparisons are made between the impact functions for individual accident year reserves under Mack's Model and the Bornhuetter-Ferguson methodology. It is shown that the impact of incremental claims on these statistics of interest varies widely throughout a loss triangle and is heavily dependent on other cells in the triangle. Results are illustrated using data from a Belgian non-life insurer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源