论文标题

椭圆形的吉尼布集合:用于更高维度的本地和全球统计数据的统一方法

The Elliptic Ginibre Ensemble: A Unifying Approach to Local and Global Statistics for Higher Dimensions

论文作者

Akemann, G., Duits, M., Molag, L. D.

论文摘要

复杂的非铁随机矩阵的椭圆形吉尼伯集合可以在旋转不变的吉尼伯集合和Hermitian随机矩阵的高斯单位集合之间插入。它对应于四维一二元库仑气体在四极场中,在反向温度下$β= 2 $。此外,它代表具有相应平面赫米特多项式核的复杂平面中的确定点过程。我们的主要工具是对该内核的单个轮廓积分表示的鞍点分析。我们提供了一种统一的方法,以严格地得出局部和全球光谱统计数据的几种已知和新结果,包括更高的维度。首先,我们证明了Forrester和Jancovici首先得出的椭圆形花基团的全球统计数据。限制内核从限制椭圆液滴的边界获得了主要贡献。在Hermitian限制中,陷阱中的非相互作用费米在$ d $ real Dimensions $ \ Mathbb {r}^d $与$ d $ - 维谐波振荡器之间存在知道对应关系。我们为当地的$ d $二维散装(Sine-)和Edge(Airy-)内核提供了严格的证明,该证明是由Dean等人首先定义的,这补充了Deleporte和Lambert的最新结果。在$ d $ d $复杂的尺寸中使用与$ d $ d $ d $维的谐波振荡器$ \ mathbb {c}^d $,我们提供了弱且强烈的非热性的新的本地散装和边缘统计,以前,前者在$ d $ Real和$ d $ d $复杂尺寸中的相关性之间的相关性之间进行了插值。对于$ \ mathbb {c}^d $带有$ d = 1 $的$,这对应于旋转陷阱中的非相互作用费米子。

The elliptic Ginibre ensemble of complex non-Hermitian random matrices allows to interpolate between the rotational invariant Ginibre ensemble and the Gaussian unitary ensemble of Hermitian random matrices. It corresponds to a two-dimensional one-component Coulomb gas in a quadrupolar field, at inverse temperature $β=2$. Furthermore, it represents a determinantal point process in the complex plane with corresponding kernel of planar Hermite polynomials. Our main tool is a saddle point analysis of a single contour integral representation of this kernel. We provide a unifying approach to rigorously derive several known and new results of local and global spectral statistics, including in higher dimensions. First, we prove the global statistics in the elliptic Ginibre ensemble first derived by Forrester and Jancovici. The limiting kernel receives its main contribution from the boundary of the limiting elliptic droplet of support. In the Hermitian limit, there is a know correspondence between non-interacting fermions in a trap in $d$ real dimensions $\mathbb{R}^d$ and the $d$-dimensional harmonic oscillator. We present a rigorous proof for the local $d$-dimensional bulk (sine-) and edge (Airy-) kernel first defined by Dean et al., complementing recent results by Deleporte and Lambert. Using the same relation to the $d$-dimensional harmonic oscillator in $d$ complex dimensions $\mathbb{C}^d$, we provide new local bulk and edge statistics at weak and strong non-Hermiticity, where the former interpolates between correlations in $d$ real and $d$ complex dimensions. For $\mathbb{C}^d$ with $d=1$ this corresponds to non-interacting fermions in a rotating trap.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源