论文标题
深单6D物体姿势估计的对抗样品
Adversarial samples for deep monocular 6D object pose estimation
论文作者
论文摘要
从RGB图像中估算6D对象姿势对于许多实际应用,例如自动驾驶和机器人抓握。最近的深度学习模型在这项任务上取得了重大进展,但他们的鲁棒性很少受到研究的关注。在这项工作中,我们首次研究了对抗性样本,这些样本可以愚弄具有无法察觉的扰动以输入图像的深度学习模型。特别是,我们提出了一个统一的6D姿势估计攻击,即U6DA,它可以成功攻击几种最新的(SOTA)深度学习模型,以进行6D姿势估计。我们U6DA的关键思想是欺骗模型,以预测对象实例定位和形状的错误结果,这对于正确的6D姿势估计至关重要。具体而言,我们探索了基于转移的黑盒攻击6D姿势估计。我们设计了U6DA损失以指导对抗性示例的产生,损失旨在将细分注意图从其原始位置转移。我们表明,生成的对抗样品不仅对直接6D姿势估计模型有效,而且能够攻击两阶段模型,而不管其强大的RANSAC模块如何。进行了广泛的实验,以证明U6DA在大规模公共基准上的有效性,可转移性和防御能力。我们还引入了一个新的U6DA-LINEMOD数据集,以进行6D姿势估计任务的鲁棒性研究。我们的代码和数据集将在\ url {https://github.com/cuge1995/u6da}提供。
Estimating 6D object pose from an RGB image is important for many real-world applications such as autonomous driving and robotic grasping. Recent deep learning models have achieved significant progress on this task but their robustness received little research attention. In this work, for the first time, we study adversarial samples that can fool deep learning models with imperceptible perturbations to input image. In particular, we propose a Unified 6D pose estimation Attack, namely U6DA, which can successfully attack several state-of-the-art (SOTA) deep learning models for 6D pose estimation. The key idea of our U6DA is to fool the models to predict wrong results for object instance localization and shape that are essential for correct 6D pose estimation. Specifically, we explore a transfer-based black-box attack to 6D pose estimation. We design the U6DA loss to guide the generation of adversarial examples, the loss aims to shift the segmentation attention map away from its original position. We show that the generated adversarial samples are not only effective for direct 6D pose estimation models, but also are able to attack two-stage models regardless of their robust RANSAC modules. Extensive experiments were conducted to demonstrate the effectiveness, transferability, and anti-defense capability of our U6DA on large-scale public benchmarks. We also introduce a new U6DA-Linemod dataset for robustness study of the 6D pose estimation task. Our codes and dataset will be available at \url{https://github.com/cuge1995/U6DA}.