论文标题

特定于扫描的自我监督的贝叶斯深度非线性反转,以进行无效的MRI重建

Scan-specific Self-supervised Bayesian Deep Non-linear Inversion for Undersampled MRI Reconstruction

论文作者

Leynes, Andrew P., Deveshwar, Nikhil, Nagarajan, Srikantan S., Larson, Peder E. Z.

论文摘要

由于数据采样的固有局限性,磁共振成像的习得时间较慢。最近,监督的深度学习已成为重建子采样的MRI的有前途的技术。但是,监督的深度学习需要大量的完全采样数据。尽管已经出现了无监督或自我监督的深度学习方法来解决监督深度学习方法的局限性,但它们仍然需要图像数据库。相反,扫描特定的深度学习方法仅使用单个扫描中的亚采样数据来学习和重建。在这里,我们介绍了不需要自动校准扫描区域的特定扫描特定自我监督的贝叶斯深度非线性反转(DNLINV)。 DNLINV采用了深层图像先验类型的生成建模方法,并依靠近似贝叶斯推断来正规化深卷积神经网络。我们在几种解剖学,对比度和采样模式上演示了我们的方法,并在扫描特定校准的无平行成像和压缩感测的现有方法上表现出改善的性能。

Magnetic resonance imaging is subject to slow acquisition times due to the inherent limitations in data sampling. Recently, supervised deep learning has emerged as a promising technique for reconstructing sub-sampled MRI. However, supervised deep learning requires a large dataset of fully-sampled data. Although unsupervised or self-supervised deep learning methods have emerged to address the limitations of supervised deep learning approaches, they still require a database of images. In contrast, scan-specific deep learning methods learn and reconstruct using only the sub-sampled data from a single scan. Here, we introduce Scan-Specific Self-Supervised Bayesian Deep Non-Linear Inversion (DNLINV) that does not require an auto calibration scan region. DNLINV utilizes a deep image prior-type generative modeling approach and relies on approximate Bayesian inference to regularize the deep convolutional neural network. We demonstrate our approach on several anatomies, contrasts, and sampling patterns and show improved performance over existing approaches in scan-specific calibrationless parallel imaging and compressed sensing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源