论文标题

动态社区网络上的人口游戏

Population games on dynamic community networks

论文作者

Govaert, Alain, Zino, Lorenzo, Tegling, Emma

论文摘要

在这封信中,我们处理具有动态发展社区的网络上的人口游戏的进化游戏理论学习过程。具体而言,我们提出了一个新颖的数学框架,在社区网络上,确定性的连续时间复制器方程与社区之间的封闭动态流动过程相结合,该过程受环境反馈机制控制的社区之间,从而产生了共同进化的动力学。通过对获得的微分方程系统的严格分析,我们表征了耦合动力学系统的平衡。此外,对于一类具有两种动作和对称奖励的人口游戏,采用了Lyapunov的论点来建立一个进化的民间定理,该定理保证了与游戏的进化稳定状态融合。提供数值模拟以说明和证实我们的发现。

In this letter, we deal with evolutionary game theoretic learning processes for population games on networks with dynamically evolving communities. Specifically, we propose a novel mathematical framework in which a deterministic, continuous-time replicator equation on a community network is coupled with a closed dynamic flow process between communities that is governed by an environmental feedback mechanism, resulting in co-evolutionary dynamics. Through a rigorous analysis of the system of differential equations obtained, we characterize the equilibria of the coupled dynamical system. Moreover, for a class of population games with two actions and symmetric rewards a Lyapunov argument is employed to establish an evolutionary folk theorem that guarantees convergence to the evolutionary stable states of the game. Numerical simulations are provided to illustrate and corroborate our findings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源