论文标题
大型干涉仪(生命):ii。来自单个时期观测的信号模拟,信号提取和基本系外行星参数
Large Interferometer For Exoplanets (LIFE): II. Signal simulation, signal extraction and fundamental exoplanet parameters from single epoch observations
论文作者
论文摘要
外界(Life)倡议的大型干涉仪正在开发科学和技术路线图,用于雄心勃勃的太空任务,该任务采用了空间中的中红外(MIR)空的干涉仪,以检测数百个外部球星的热量发射并表征其大气。为了量化这种任务的科学潜力,特别是在技术权衡的背景下,需要仪器模拟器。另外,需要信号提取算法来验证模拟系外行星数据集中包含的外部系列特性(例如,角度分离,光谱通量)。我们提出了Lifesim,这是一种用于模拟具有miR基于空间空的空的干涉仪的范围内系统观察的软件工具。它包括天体物理噪声源(即,来自局部十二生肉和外卵石尘的恒星泄漏以及恒星泄漏和热发射),并具有灵活性,可以在将来包含仪器噪声项。 Lifesim提供了一种可访问的方法,用于预测未来观察的预期SNR,这是各种关键仪器和目标参数的函数。如我们当前的模拟所预期的那样,提取光谱的SNR被占主导地位。从单个时期的观察结果中,我们对恒星可居住区域内绕行的小($ r <1.5 r_ \ mathrm {Earth} $)行星的小($ r <1.5 r_ \ mathrm {arter} $)的行星,我们发现,在估计的外部有效温度中,典型的不确定性是$ \ lyssim $ \ lyssim $ 10%的典型范围$ \ yseplanet radius $ \ ysemim $ \ sime $ \ best andim $ \ best and Mestim $ 20%,并且是20%,并且是20%,并且是20%,并且是20%,并且是20%,并且是20%,并且是20%,并且是20%且均可及$ \ Lessim $ 2%。在信号提取过程中获得的SNR值偏离纯粹基于光子计数统计的SNR的10%。 (简略)
The Large Interferometer For Exoplanets (LIFE) initiative is developing the science and a technology roadmap for an ambitious space mission featuring a space-based mid-infrared (MIR) nulling interferometer in order to detect the thermal emission of hundreds of exoplanets and characterize their atmospheres. In order to quantify the science potential of such a mission, in particular in the context of technical trade-offs, an instrument simulator is required. In addition, signal extraction algorithms are needed to verify that exoplanet properties (e.g., angular separation, spectral flux) contained in simulated exoplanet datasets can be accurately retrieved. We present LIFEsim, a software tool developed for simulating observations of exoplanetary systems with an MIR space-based nulling interferometer. It includes astrophysical noise sources (i.e., stellar leakage and thermal emission from local zodiacal and exo-zodiacal dust) and offers the flexibility to include instrumental noise terms in the future. LIFEsim provides an accessible way for predicting the expected SNR of future observations as a function of various key instrument and target parameters. The SNRs of the extracted spectra are photon-noise dominated, as expected from our current simulations. From single epoch observations in our mock survey of small ($R < 1.5 R_\mathrm{Earth}$) planets orbiting within the habitable zones of their stars, we find that typical uncertainties in the estimated effective temperature of the exoplanets are $\lesssim$10%, for the exoplanet radius $\lesssim$20%, and for the separation from the host star $\lesssim$2%. SNR values obtained in the signal extraction process deviate less than 10% from purely photon-counting statistics based SNRs. (abridged)