论文标题
人类动力学行为的出现来自电缆驱动的机器人眼的最佳控制
Emergence of human oculomotor behavior from optimal control of a cable-driven biomimetic robotic eye
论文作者
论文摘要
在人类机器人的互动中,眼动运动在非语言交流中起着重要作用。但是,控制机器人眼的动作表现出与人眼动物系统相似的性能仍然是一个主要挑战。在本文中,我们研究了如何使用电缆驱动的驱动系统来控制人眼的现实模型,该系统模仿了六个眼外肌肉的自由度。仿生设计引入了解决新颖的挑战,最值得注意的是,需要控制每个肌肉的支撑,以防止运动过程中的紧张感损失,这将导致电缆松弛和缺乏控制。我们构建了一个机器人原型,并开发了一个非线性模拟器和两个控制器。在第一种方法中,我们使用局部衍生技术线性化了非线性模型,并设计了线性 - 季度最佳控制器,以优化一种成本函数,该成本函数可以说明准确性,能量消耗和移动持续时间。第二种方法使用了一个复发性神经网络,该神经网络从系统的样本轨迹中学习非线性系统动力学,以及一个非线性轨迹优化求解器,可最大程度地减少相似的成本函数。我们专注于产生具有完全不受限制运动学的快速saccadic眼球运动,以及六根电缆的控制信号的生成,这些电缆同时满足了几个动态优化标准。该模型忠实地模仿了人类扫视观察到的三维旋转运动学和动力学。我们的实验结果表明,尽管两种方法都产生了相似的结果,但非线性方法对于将来改进模型的方法更加灵活,该模型的计算是线性化模型的位置依赖性的预期和局部衍生物的计算变得特别乏味。
In human-robot interactions, eye movements play an important role in non-verbal communication. However, controlling the motions of a robotic eye that display similar performance as the human oculomotor system is still a major challenge. In this paper, we study how to control a realistic model of the human eye with a cable-driven actuation system that mimics the six degrees of freedom of the extra-ocular muscles. The biomimetic design introduces novel challenges to address, most notably the need to control the pretension on each individual muscle to prevent the loss of tension during motion, that would lead to cable slack and lack of control. We built a robotic prototype and developed a nonlinear simulator and two controllers. In the first approach, we linearized the nonlinear model, using a local derivative technique, and designed linear-quadratic optimal controllers to optimize a cost function that accounts for accuracy, energy expenditure, and movement duration. The second method uses a recurrent neural network that learns the nonlinear system dynamics from sample trajectories of the system, and a non-linear trajectory optimization solver that minimizes a similar cost function. We focused on the generation of rapid saccadic eye movements with fully unconstrained kinematics, and the generation of control signals for the six cables that simultaneously satisfied several dynamic optimization criteria. The model faithfully mimics the three-dimensional rotational kinematics and dynamics observed for human saccades. Our experimental results indicate that while both methods yielded similar results, the nonlinear method is more flexible for future improvements to the model, for which the calculations of the linearized model's position-dependent pretensions and local derivatives become particularly tedious.