论文标题

渲染循环空中机器人模拟器:室内农业中产量估计的案例研究

Render-in-the-loop aerial robotics simulator: Case Study on Yield Estimation in Indoor Agriculture

论文作者

Ivanovic, Antun, Polic, Marsela, Tabak, Jelena, Orsag, Matko

论文摘要

受到深度学习中的SIM到现实转移的最新有希望的结果的启发,我们构建了一个现实的模拟环境,结合了机器人操作系统(ROS)兼容物理模拟器(Gazebo)和Cycles和Cycles,这是Blender的逼真的生产渲染引擎。提出的模拟器管道使我们能够模拟近现代的RGB-D图像。为了展示模拟器管道的功能,我们提出了一项案例研究,重点是室内机器人农业。我们开发了一种用于甜椒产量估计任务的解决方案。我们的产量估计方法始于空中机器人技术控制和轨迹计划,再加上基于深度学习的胡椒检测,以及用于计算水果的聚类方法。该案例研究的结果表明,我们可以将实时动态模拟与几乎逼真的渲染能力结合起来,以模拟复杂的机器人系统。

Inspired by recent promising results in sim-to-real transfer in deep learning we built a realistic simulation environment combining a Robot Operating System (ROS)-compatible physics simulator (Gazebo) with Cycles, the realistic production rendering engine from Blender. The proposed simulator pipeline allows us to simulate near-realistic RGB-D images. To showcase the capabilities of the simulator pipeline we propose a case study that focuses on indoor robotic farming. We developed a solution for sweet pepper yield estimation task. Our approach to yield estimation starts with aerial robotics control and trajectory planning, combined with deep learning-based pepper detection, and a clustering approach for counting fruit. The results of this case study show that we can combine real time dynamic simulation with near realistic rendering capabilities to simulate complex robotic systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源