论文标题
以用户为中心的无线无线网络中的基于子空间的飞行员净化
Subspace-Based Pilot Decontamination in User-Centric Scalable Cell-Free Wireless Networks
论文作者
论文摘要
我们考虑使用以用户为中心的远程无线电单元(RUS)在时分区双工(TDD)模式下运行的无单元无线系统。由于每个通道相干插槽的上行链路飞行尺寸有限,因此副驾驶员可能会引起相互飞行员的污染。在当前文献中,假定所有用户渠道的长期统计知识可用。这使最小均方误差通道估计或简化的主要子空间投影可以实现在通道协方差矩阵上的某些假设下实现明显的飞行员去污染。但是,估计频道协方差矩阵,甚至只是其在所有形成用户群集的RU的主要子空间并不是一件容易的事。实际上,如果设计不当,则需要进行此类长期统计估计的试验计划也将遇到污染问题。在本文中,我们提出了一种新的通道子空间估计方案,该方案明确设计为无单元的无线网络。我们的方案基于1)使用拉丁正方形宽带频率跳跃的探测参考信号(SRS),以及2)基于强大的主组件分析(R-PCA)的子空间估计方法。 SRS跳跃方案可确保对任何用户和任何参与其群集的RU,只有少数试点测量值将包含强大的副驾驶干扰。 R-PCA(隐含地)消除了这几个受污染的测量值,该测量旨在使估计和打折``离群''测量值进行正规化。我们的仿真结果表明,所提出的方案几乎实现了几乎完美的子空间知识,从而通过理想的频道状态信息产生了非常接近的系统性能,因此从本质上解决了无单元以用户为中心的TDD无线网络中的试验污染问题。
We consider a cell-free wireless system operated in Time Division Duplex (TDD) mode with user-centric clusters of remote radio units (RUs). Since the uplink pilot dimensions per channel coherence slot is limited, co-pilot users might incur mutual pilot contamination. In the current literature, it is assumed that the long-term statistical knowledge of all user channels is available. This enables Minimum Mean-Square Error channel estimation or simplified dominant subspace projection, which achieves significant pilot decontamination under certain assumptions on the channel covariance matrices. However, estimating the channel covariance matrix or even just its dominant subspace at all RUs forming a user cluster is not an easy task. In fact, if not properly designed, a piloting scheme for such long-term statistics estimation will also be subject to the contamination problem. In this paper, we propose a new channel subspace estimation scheme explicitly designed for cell-free wireless networks. Our scheme is based on 1) a sounding reference signal (SRS) using latin squares wideband frequency hopping, and 2) a subspace estimation method based on robust Principal Component Analysis (R-PCA). The SRS hopping scheme ensures that for any user and any RU participating in its cluster, only a few pilot measurements will contain strong co-pilot interference. These few heavily contaminated measurements are (implicitly) eliminated by R-PCA, which is designed to regularize the estimation and discount the ``outlier'' measurements. Our simulation results show that the proposed scheme achieves almost perfect subspace knowledge, which in turns yields system performance very close to that with ideal channel state information, thus essentially solving the problem of pilot contamination in cell-free user-centric TDD wireless networks.