论文标题
堆叠断层有助于基于卤化物的超电子导体中的锂离子传导
Stacking Faults Assist Lithium-Ion Conduction in a Halide-Based Superionic Conductor
论文作者
论文摘要
为了追求紧急需要的,用于电动汽车和便携式电子应用的能量密集的固态电池,Halide固体电解质提供了有希望的前进路径,具有针对高压氧化物电极,可调离子电导量的高压兼容性,可调的离子电导率和便捷的处理。对于这个化合物家族,合成方案强烈影响阳离子位点障碍并调节LI+迁移率。在这项工作中,我们揭示了超级会议导体LI3YCL6中高浓度的堆叠断层的存在,并通过在选定温度下用合成和热处理来调整缺陷浓度来控制其LI+电导率。从可变温度同步子X射线衍射,中子衍射,低温传播电子显微镜,固态核磁共振,密度功能理论和电化学阻抗光谱镜检查中从可变温度同步X射线衍射,中子衍射,中子衍射,中子衍射,中子衍射,固体透射电子显微镜和电化学频谱的杠杆作用,我们确定平面缺陷的性质以及在较低的偏移范围内的作用,从而确定互补的见解li3ycl6。我们利用顺磁性松弛的增强来使89Y固态NMR直接对比,并与不同的制备方法引起的Y阳离子位点障碍,为其他研究含Y的组合物的研究人员展示了有效的工具。由于温度低至333 K(60°C)的热处理,我们降低了平面缺陷的浓度,证明了一种调整LI+电导率的简单方法。预计这项工作的结果可以推广到其他卤化固体候选物,并在这类锂离子导体中对支持缺陷的LI+传导有了改进的理解。
In the pursuit of urgently-needed, energy dense solid-state batteries for electric vehicle and portable electronics applications, halide solid electrolytes offer a promising path forward with exceptional compatibility against high-voltage oxide electrodes, tunable ionic conductivities, and facile processing. For this family of compounds, synthesis protocols strongly affect cation site disorder and modulate Li+ mobility. In this work, we reveal the presence of a high concentration of stacking faults in the superionic conductor Li3YCl6 and demonstrate a method of controlling its Li+ conductivity by tuning the defect concentration with synthesis and heat treatments at select temperatures. Leveraging complementary insights from variable temperature synchrotron X-ray diffraction, neutron diffraction, cryogenic transmission electron microscopy, solid-state nuclear magnetic resonance, density functional theory, and electrochemical impedance spectroscopy, we identify the nature of planar defects and the role of nonstoichiometry in lowering Li+ migration barriers and increasing Li site connectivity in mechanochemically-synthesized Li3YCl6. We harness paramagnetic relaxation enhancement to enable 89Y solid-state NMR, and directly contrast the Y cation site disorder resulting from different preparation methods, demonstrating a potent tool for other researchers studying Y-containing compositions. With heat treatments at temperatures as low as 333 K (60°C), we decrease the concentration of planar defects, demonstrating a simple method for tuning the Li+ conductivity. Findings from this work are expected to be generalizable to other halide solid electrolyte candidates and provide an improved understanding of defect-enabled Li+ conduction in this class of Li-ion conductors.