论文标题
弱监督的信函学习
Weakly Supervised Correspondence Learning
论文作者
论文摘要
对应学习是机器人技术中的一个基本问题,旨在学习状态,不同动态或实施方案的动作对之间的映射。但是,当前的对应学习方法要么利用严格的配对数据(通常很难收集),要么使用未配对的数据使用正规化技术(例如循环一致性)学习,这些数据遇到了严重的错位问题。我们提出了一种弱监督的对应学习方法,该方法在严格配对的数据上进行了强有力的监督与无人监督的学习之间的贸易,而不是规律的数据,而不是不成对的数据。我们的想法是利用两种类型的弱监督:i)状态和动作的时间顺序以减少复合错误,ii)配对抽象而不是配对数据,以减轻未对准问题并学习更准确的对应关系。在现实世界中,易于访问的两种类型的弱监督,它们同时降低了严格配对数据的高成本并提高了学习通信的质量。
Correspondence learning is a fundamental problem in robotics, which aims to learn a mapping between state, action pairs of agents of different dynamics or embodiments. However, current correspondence learning methods either leverage strictly paired data -- which are often difficult to collect -- or learn in an unsupervised fashion from unpaired data using regularization techniques such as cycle-consistency -- which suffer from severe misalignment issues. We propose a weakly supervised correspondence learning approach that trades off between strong supervision over strictly paired data and unsupervised learning with a regularizer over unpaired data. Our idea is to leverage two types of weak supervision: i) temporal ordering of states and actions to reduce the compounding error, and ii) paired abstractions, instead of paired data, to alleviate the misalignment problem and learn a more accurate correspondence. The two types of weak supervision are easy to access in real-world applications, which simultaneously reduces the high cost of annotating strictly paired data and improves the quality of the learned correspondence.