论文标题
通过FMCW LIDAR学习移动对象跟踪
Learning Moving-Object Tracking with FMCW LiDAR
论文作者
论文摘要
在本文中,我们提出了一种利用我们新开发的激光雷达传感器,频率调制连续波(FMCW)LIDAR的基于学习的运动对象跟踪方法。与大多数现有的商业LIDAR传感器相比,我们的FMCW LiDAR可以为点云的每个3D点提供其他多普勒速度信息。从中受益,我们可以以半自动的方式将实例标签作为基础真理。鉴于标签,我们提出了一个对比度学习框架,该框架将同一实例中的功能汇总到嵌入空间中的功能,并将其从不同实例中脱颖而出,以提高跟踪质量。对我们记录的驾驶数据进行了广泛的实验,结果表明,我们的方法的表现优于基线方法。
In this paper, we propose a learning-based moving-object tracking method utilizing our newly developed LiDAR sensor, Frequency Modulated Continuous Wave (FMCW) LiDAR. Compared with most existing commercial LiDAR sensors, our FMCW LiDAR can provide additional Doppler velocity information to each 3D point of the point clouds. Benefiting from this, we can generate instance labels as ground truth in a semi-automatic manner. Given the labels, we propose a contrastive learning framework, which pulls together the features from the same instance in embedding space and pushes apart the features from different instances, to improve the tracking quality. Extensive experiments are conducted on our recorded driving data, and the results show that our method outperforms the baseline methods by a large margin.