论文标题

PKGM:电子商务应用程序的预训练的知识图模型

PKGM: A Pre-trained Knowledge Graph Model for E-commerce Application

论文作者

Zhang, Wen, Wong, Chi-Man, Ye, Ganqinag, Wen, Bo, Zhou, Hongting, Zhang, Wei, Chen, Huajun

论文摘要

近年来,知识图已被广泛应用为组织数据的统一方法,并增强了许多需要知识的任务。在在线购物平台淘宝精中,我们构建了十亿个尺度的电子商务产品知识图。它统一组织数据,并为各种任务(例如项目建议)提供项目知识服务。通常,通过三重数据提供此类知识服务,而此实现包括(1)产品知识图上的乏味数据选择工作,以及(2)任务模型设计工作,以注入这些三元组知识。更重要的是,产品知识图远非完整,导致错误传播到知识增强的任务。为了避免这些问题,我们为十亿个尺度的产品知识图提出了预训练的知识图模型(PKGM)。一方面,它可以以统一的方式提供项目知识服务,并提供服务向量,用于嵌入基于嵌入的和项目知识相关的任务模型,而无需访问三重数据。另一方面,它的服务是基于隐式完成的产品知识图提供的,克服了常见的不完整问题。我们还提出了两种将服务向量从PKGM集成到下游任务模型的一般方法。我们在五个与知识相关的任务,项目分类,项目分辨率,项目建议,场景检测和顺序建议中测试PKGM。实验结果表明,PKGM在这些任务上引入了显着的性能增长,说明了PKGM的服务向量有用。

In recent years, knowledge graphs have been widely applied as a uniform way to organize data and have enhanced many tasks requiring knowledge. In online shopping platform Taobao, we built a billion-scale e-commerce product knowledge graph. It organizes data uniformly and provides item knowledge services for various tasks such as item recommendation. Usually, such knowledge services are provided through triple data, while this implementation includes (1) tedious data selection works on product knowledge graph and (2) task model designing works to infuse those triples knowledge. More importantly, product knowledge graph is far from complete, resulting error propagation to knowledge enhanced tasks. To avoid these problems, we propose a Pre-trained Knowledge Graph Model (PKGM) for the billion-scale product knowledge graph. On the one hand, it could provide item knowledge services in a uniform way with service vectors for embedding-based and item-knowledge-related task models without accessing triple data. On the other hand, it's service is provided based on implicitly completed product knowledge graph, overcoming the common the incomplete issue. We also propose two general ways to integrate the service vectors from PKGM into downstream task models. We test PKGM in five knowledge-related tasks, item classification, item resolution, item recommendation, scene detection and sequential recommendation. Experimental results show that PKGM introduces significant performance gains on these tasks, illustrating the useful of service vectors from PKGM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源