论文标题

CMS 2阶段高粒度量热计的基于GNN的端到端重建

GNN-based end-to-end reconstruction in the CMS Phase 2 High-Granularity Calorimeter

论文作者

Bhattacharya, Saptaparna, Chernyavskaya, Nadezda, Ghosh, Saranya, Gray, Lindsey, Kieseler, Jan, Klijnsma, Thomas, Long, Kenneth, Nawaz, Raheel, Pedro, Kevin, Pierini, Maurizio, Pradhan, Gauri, Qasim, Shah Rukh, Viazlo, Oleksander, Zehetner, Philipp

论文摘要

我们介绍了朝着基于一通机器学习(ML)成像量热计重建的一项循环进展的当前阶段。所使用的模型基于图形神经网络(GNN),并直接分析每个HGCAL端盖中的命令。通过用相同的群集指数标记命中,对ML算法进行了训练,以预测源自同一入射粒子的命中簇。我们施加了简单的标准,以评估预测与群集相关的命中是否与任何特定个体入射粒子产生的命中相匹配。通过模拟两个HGCAL端盖中的每个tau lept子来研究该算法,其中每个TAU可能会根据其测量的标准模型分支概率腐烂。模拟包括tau衰减产物的材料相互作用,这些相互作用可能会产生量热计的其他颗粒。使用这种不同的多粒子环境,我们可以研究这种重建技术的应用,并开始表征能量遏制和性能。

We present the current stage of research progress towards a one-pass, completely Machine Learning (ML) based imaging calorimeter reconstruction. The model used is based on Graph Neural Networks (GNNs) and directly analyzes the hits in each HGCAL endcap. The ML algorithm is trained to predict clusters of hits originating from the same incident particle by labeling the hits with the same cluster index. We impose simple criteria to assess whether the hits associated as a cluster by the prediction are matched to those hits resulting from any particular individual incident particles. The algorithm is studied by simulating two tau leptons in each of the two HGCAL endcaps, where each tau may decay according to its measured standard model branching probabilities. The simulation includes the material interaction of the tau decay products which may create additional particles incident upon the calorimeter. Using this varied multiparticle environment we can investigate the application of this reconstruction technique and begin to characterize energy containment and performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源