论文标题
$ e_9 $对称性在$ s^1 $上的异性弦和弱重力猜想
$E_9$ symmetry in the Heterotic String on $S^1$ and the Weak Gravity Conjecture
论文作者
论文摘要
我们显示,在模量空间边界展示的圆环弦上($ r \至0 $,或等效地划分限制$ r \ to \ infty $)的圆形弦上的紧凑型,一种绕组或动量模式,增强了$ e_8 \ $ e_8 \ times e_8 \ times e_8 $或$(32)$(32)$(32)$ sopmetry to actine al evelbe op(32)OP(32)OP(32)OP(32)OP(32)OP(32)OP(32)OP(32)OP(32) e_9)/\ sim $(标识是指$ e_9 $的两个副本共享相同的中央扩展名)和$ \ hat {d} _ {16} $。我们还证明,这些模式塔满足了晶格弱的重力和排斥力的猜想。
We show that compactifications of the heterotic string on a circle exhibit at the boundary of moduli space ($R\to 0$, or equivalently the decompactification limit $R \to \infty$) a tower of winding or momentum modes that enhance the $E_8 \times E_8$ or $SO(32)$ gauge symmetry to the affine algebras $(E_9 \oplus E_9)/\sim$ (the identification means that the two copies of $E_9$ share the same central extension) and $\hat{D}_{16}$, respectively. We also prove that these towers of modes satisfy the lattice Weak Gravity and Repulsive Force Conjectures.