论文标题

为喷气子结构中的新物理学创建简单,可解释的异常检测器

Creating Simple, Interpretable Anomaly Detectors for New Physics in Jet Substructure

论文作者

Bradshaw, Layne, Chang, Spencer, Ostdiek, Bryan

论文摘要

使用卷积自动编码器的异常检测是一种以模型敏捷方式搜索新物理学的流行方法。这些技术功能强大,但它们仍然是一个“黑匣子”,因为我们不知道哪些高级物理可观察到了事件的异常情况。为了解决这个问题,我们将Faucett等人最近提出的技术调整了,该技术将神经网络分类器学到的物理观察物绘制为异常检测情况。我们提出了两种不同的策略,这些策略使用少量高级可观察物来模仿自动编码器在背景事件上做出的决策,一种旨在直接学习自动编码器的输出,而另一种旨在了解自动编码器在两次事件上的输出之间的差异。尽管他们的方法存在基本差异,但我们发现两种策略的订购性能都与自动编码器相似,并且独立使用了相同的六个高级可观察物。从那里,我们将这些网络作为异常检测器的性能进行比较。我们发现,这两种策略在各种信号上都与自动编码器相似,这给出了一个非平凡的演示,即学习订购背景事件转移以订购各种信号事件。

Anomaly detection with convolutional autoencoders is a popular method to search for new physics in a model-agnostic manner. These techniques are powerful, but they are still a "black box," since we do not know what high-level physical observables determine how anomalous an event is. To address this, we adapt a recently proposed technique by Faucett et al., which maps out the physical observables learned by a neural network classifier, to the case of anomaly detection. We propose two different strategies that use a small number of high-level observables to mimic the decisions made by the autoencoder on background events, one designed to directly learn the output of the autoencoder, and the other designed to learn the difference between the autoencoder's outputs on a pair of events. Despite the underlying differences in their approach, we find that both strategies have similar ordering performance as the autoencoder and independently use the same six high-level observables. From there, we compare the performance of these networks as anomaly detectors. We find that both strategies perform similarly to the autoencoder across a variety of signals, giving a nontrivial demonstration that learning to order background events transfers to ordering a variety of signal events.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源