论文标题

投影空间产物中非常普遍的曲面的代数双曲线

Algebraic hyperbolicity of very general hypersurfaces in products of projective spaces

论文作者

Yeong, Wern

论文摘要

我们通过使用EIN,Voisin,Pacienza,Coskun和Riedl和其他的三种技术来研究$ \ Mathbb {p}^M \ times \ Mathbb {p}^n $中非常普遍的超曲面的代数双曲线。结果,我们完全回答了一个问题,即在$ \ Mathbb {p}^m \ times \ times \ mathbb {p}^n $中是否非常普遍的低表情(a,b)$(a,b)$是代数是多余的(7,3),(6,3)$和$(5,b)$,带有$ b \ geq 3. $作为这些技术的另一种应用,我们改善了已知的结果,即在$ \ mathbb {p}^n $ a a $ 2n-2 $中至少是$ n \ n $ n \ geq 6 $ n = $ n = 4 $ n = 4 $ n = 4 $ n = 4 $ n = 4 $ n = $ 2n-2 $的非常普遍的hypersurfaces,至少是$ 2n-2 $。

We study the algebraic hyperbolicity of very general hypersurfaces in $\mathbb{P}^m \times \mathbb{P}^n$ by using three techniques that build on past work by Ein, Voisin, Pacienza, Coskun and Riedl, and others. As a result, we completely answer the question of whether or not a very general hypersurface of bidegree $(a,b)$ in $\mathbb{P}^m \times \mathbb{P}^n$ is algebraically hyperbolic, except in $\mathbb{P}^3 \times \mathbb{P}^1$ for the bidegrees $(a,b)= (7,3), (6,3)$ and $(5,b)$ with $b\geq 3.$ As another application of these techniques, we improve the known result that very general hypersurfaces in $\mathbb{P}^n$ of degree at least $2n-2$ are algebraically hyperbolic when $n\geq 6$ to $n \geq 5$, leaving $n=4$ as the only open case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源