论文标题

无固定点的伪 - anosov同构,结式同源性和五薄薄油

Fixed-point-free pseudo-Anosov homeomorphisms, knot Floer homology and the cinquefoil

论文作者

Farber, Ethan, Reinoso, Braeden, Wang, Luya

论文摘要

考虑到任何$ s^3 $的属,双曲线,纤维纤维结的带有非零分数Dehn Twist系数,我们表明其伪-Anosov代表具有固定点。再加上鲍德温 - 赫 - 塞维克的最新工作,这证明了Floer同源性检测到Cinquefoil结$ t(2,5)$,并且cinquefoil是$ s^3 $中唯一的two l-space结。我们的结果在$ s^3 $中的循环分支覆盖物的浮动同源性,至$ \ Mathit {su}(2)$ - Abelian Dehn手术,以及Khovanov和Annular Khovanov同源性。在证明我们的固定点结果的过程中,我们描述了一小部分火车轨道清单,这些火车轨道载有所有伪-Anosov同构的同构,这是刺穿的磁盘上的大多数阶层。结果,我们在特定地层中找到了一个规范的曲目$τ$,其中包含所有伪 - anosov同构的同构$ \ Mathcal {q} _0 $在Two属上,并描述每个$ \ \ nathcal中的所有固定的pseudo-anosov ansosov ansomormormorphismphismodists $ \ \ natercal中的所有固定pseudo-anosov ansomormorphism {Q} _0 $。

Given any genus-two, hyperbolic, fibered knot in $S^3$ with nonzero fractional Dehn twist coefficient, we show that its pseudo-Anosov representative has a fixed point. Combined with recent work of Baldwin--Hu--Sivek, this proves that knot Floer homology detects the cinquefoil knot $T(2,5)$, and that the cinquefoil is the only genus-two L-space knot in $S^3$. Our results have applications to Floer homology of cyclic branched covers over knots in $S^3$, to $\mathit{SU}(2)$-abelian Dehn surgeries, and to Khovanov and annular Khovanov homology. Along the way to proving our fixed point result, we describe a small list of train tracks carrying all pseudo-Anosov homeomorphisms in most strata on the punctured disk. As a consequence, we find a canonical track $τ$ carrying all pseudo-Anosov homeomorphisms in a particular stratum $\mathcal{Q}_0$ on the genus-two surface, and describe every fixed-point-free pseudo-Anosov homeomorphism in $\mathcal{Q}_0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源