论文标题
Enclavetree:使用TEE的数据流培训和推断
EnclaveTree: Privacy-preserving Data Stream Training and Inference Using TEE
论文作者
论文摘要
通过一系列数据流的分类服务已成为云提供商的重要产品,但是由于隐私问题,用户可能会遇到障碍。尽管受信任的执行环境(TEE)是保护私人数据的有前途的解决方案,但它们仍然容易受到与数据相关访问模式引起的侧向通道攻击的影响。我们提出了一个称为EnclaveTree的隐私数据流培训和推理方案,该方案为用户数据和目标模型提供了机密性,以违反受损的云服务提供商。我们设计了一个基于矩阵的培训和推理程序,以训练Hoeffding树(HT)模型,并在TEE的受信任区域内使用受过训练的模型进行推理,这可证明可以防止利用基于访问的攻击。绩效评估表明,Endlavetree在处理具有较小或中等功能的数据流方面是实用的。当少于63个二进制功能时,Enclavetree的最大范围为$ {\厚} 10 {\ times} $和$ {\ themsim} 9 {\ times} $比在培训和推理上分别更快地bic。
The classification service over a stream of data is becoming an important offering for cloud providers, but users may encounter obstacles in providing sensitive data due to privacy concerns. While Trusted Execution Environments (TEEs) are promising solutions for protecting private data, they remain vulnerable to side-channel attacks induced by data-dependent access patterns. We propose a Privacy-preserving Data Stream Training and Inference scheme, called EnclaveTree, that provides confidentiality for user's data and the target models against a compromised cloud service provider. We design a matrix-based training and inference procedure to train the Hoeffding Tree (HT) model and perform inference with the trained model inside the trusted area of TEEs, which provably prevent the exploitation of access-pattern-based attacks. The performance evaluation shows that EnclaveTree is practical for processing the data streams with small or medium number of features. When there are less than 63 binary features, EnclaveTree is up to ${\thicksim}10{\times}$ and ${\thicksim}9{\times}$ faster than naïve oblivious solution on training and inference, respectively.