论文标题

刚体逆动力学的分析二阶部分衍生物

Analytical Second-Order Partial Derivatives of Rigid-Body Inverse Dynamics

论文作者

Singh, Shubham, Russell, Ryan P., Wensing, Patrick M.

论文摘要

基于优化的机器人控制策略通常依赖于ILQR中的一阶动力学近似方法。由于动力学的二阶部分导数相对于状态和控制,因此使用动力学的二阶近似值是昂贵的。计算这些衍生物的当前方法通常使用自动分化(AD)和链规累积或有限差分。在本文中,我们首次提出了具有浮动碱基和多道缘接头的开放链刚体系统的二阶部分衍生物的分析表达式。提出了可以进行分析的空间矢量代数的新扩展。还提供了一种复杂性的递归算法,即$ \ MATHCAL {O}(nd^2)$,而$ n $是物体的数量,而$ d $是运动树的深度。与Casadi中的广告的比较显示,具有$ N> 5 $的串行运动树的速度为1.5-3 $ \ times $,而C ++实现的速度为$ \ $ \ $ \ $ 51 $ 51 $μs$的四足动物。

Optimization-based robot control strategies often rely on first-order dynamics approximation methods, as in iLQR. Using second-order approximations of the dynamics is expensive due to the costly second-order partial derivatives of the dynamics with respect to the state and control. Current approaches for calculating these derivatives typically use automatic differentiation (AD) and chain-rule accumulation or finite-difference. In this paper, for the first time, we present analytical expressions for the second-order partial derivatives of inverse dynamics for open-chain rigid-body systems with floating base and multi-DoF joints. A new extension of spatial vector algebra is proposed that enables the analysis. A recursive algorithm with complexity of $\mathcal{O}(Nd^2)$ is also provided where $N$ is the number of bodies and $d$ is the depth of the kinematic tree. A comparison with AD in CasADi shows speedups of 1.5-3$\times$ for serial kinematic trees with $N> 5$, and a C++ implementation shows runtimes of $\approx$51$μs$ for a quadruped.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源