论文标题
在存在重力,磁场,辐射和流出反馈的情况下,湍流云的速度统计
The Velocity Statistics of Turbulent Clouds in the Presence of Gravity, Magnetic fields, Radiation, and Outflow Feedback
论文作者
论文摘要
分子云中湍流,磁场,自我重力和恒星反馈的相互作用对于理解恒星形成至关重要。我们通过结构函数从$ \ sim $ \ sim $ 0.01 pc到2 pc的结构函数来研究自我重力和流出反馈对湍流速度属性的影响。我们分析了一系列的三维磁性水动力学(MHD)模拟,对星团的形成。我们发现流出反馈可以改变速度波动的缩放,但仍然大致在Kolmogorov和Burgers湍流之间。我们观察到,自我重力和原恒星流出会增加所有长度尺度上的速度波动。流出可以扩大速度波动,最高为$ \ sim $ 7 $ \ sim $ \ sim $ \ sim $ 0.01-0.2 pc,驱动湍流最高为$ \ sim $ 1 $ 1。放大的速度波动为重力提供了更多支持,并增强了小尺度上的碎片化。自我重力的效果对较小的致密团块更为重要,并且将压缩速度组件的比例提高到$ \ sim $ 0.2 pc。但是,流出反馈驱动了螺线管和压缩模式,但相对于压缩模式,它诱导了较高的螺线管模式。因此,在流出的情况下,密集的核心最终以螺线管模式的比例稍高。我们发现可压缩的分数相当恒定,尺度上约1/3 $ \ sim $ 0.1-0.2 pc。增强速度分散和降低的压缩分数的综合作用有助于降低恒星形成速率。
The interaction of turbulence, magnetic fields, self-gravity, and stellar feedback within molecular clouds is crucial for understanding star formation. We study the effects of self-gravity and outflow feedback on the properties of the turbulent velocity via the structure function over length scales from $\sim$ 0.01 pc to 2 pc. We analyze a series of three-dimensional, magnetohydrodynamical (MHD) simulations of star cluster formation. We find outflow feedback can change the scaling of velocity fluctuations but still roughly being in between Kolmogorov and Burgers turbulence. We observe that self-gravity and protostellar outflows increase the velocity fluctuations over all length scales. Outflows can amplify the velocity fluctuations by up to a factor of $\sim$7 on scales $\sim$ 0.01 - 0.2 pc and drive turbulence up to a scale of $\sim$ 1 pc. The amplified velocity fluctuations provide more support against gravity and enhance fragmentation on small scales. The self-gravity's effect is more significant on smaller dense clumps and it increases the fraction of the compressive velocity component up to a scale of $\sim$ 0.2 pc. However, outflow feedback drives both solenoidal and compressive modes, but it induces a higher fraction of solenoidal modes relative to compressive modes. Thus, with outflows, the dense core ends up with a slightly higher fraction of solenoidal modes. We find that the compressible fraction is fairly constant with about 1/3 on scales $\sim$ 0.1 - 0.2 pc. The combined effect of enhanced velocity dispersion and reduced compressive fraction contributes to a reduction in the star formation rate.