论文标题

拓扑量子相变的全球纠缠

Global entanglement in a topological quantum phase transition

论文作者

Samimi, Elahe, Zarei, Mohammad Hossein, Montakhab, Afshin

论文摘要

表征和识别量子相变的一种有用的方法在于多部分纠缠的概念。在本文中,我们考虑了多方(全局)纠缠的众所周知的度量,即单Qubit和两倍的降低密度矩阵的平均线性熵,以便研究Kitaev topologicy量子相变(TQPT),并在Kitaev Toric code Hamiltonian中使用非线性扰动。我们提供了从上述模型中的上述措施中的$ $映射,并在经典的ISING模型中提供内部能量和能量能量相关性。因此,我们发现全局纠缠在磁化阶段中从最大值到零的连续而尖锐的过渡,从某种意义上说,其一阶导数在过渡点处有所不同。在这方面,我们得出的结论是,全球纠缠不仅可以作为探测TQPT量子批判性的合理工具,而且还可以揭示拓扑阶段的高度纠缠性质。此外,我们还引入了有条件的全球纠缠版本,该版本在临界点最大。因此,关于多方纠缠在量子多体系统的临界点上达到最大值的一般期望,我们的结果提出,有条件的全球纠缠可以很好地衡量TQPTS中多部分纠缠的良好量度。

A useful approach to characterize and identify quantum phase transitions lies in the concept of multipartite entanglement. In this paper, we consider well-known measures of multipartite (global) entanglement, i.e., average linear entropy of one-qubit and two-qubit reduced density matrices, in order to study topological quantum phase transition (TQPT) in the Kitaev Toric code Hamiltonian with a nonlinear perturbation. We provide an $exact$ mapping from aforementioned measures in the above model to internal energy and energy-energy correlations in the classical Ising model. Accordingly, we find that the global entanglement shows a continuous and sharp transition from a maximum value in the topological phase to zero in the magnetized phase in a sense that its first-order derivative diverges at the transition point. In this regard, we conclude that not only can the global entanglement serve as a reasonable tool to probe quantum criticality at TQPTs, but it also can reveal the highly entangled nature of topological phases. Furthermore, we also introduce a conditional version of global entanglement which becomes maximum at the critical point. Therefore, regarding a general expectation that multipartite entanglement reaches maximum value at the critical point of quantum many-body systems, our result proposes that the conditional global entanglement can be a good measure of multipartite entanglement in TQPTs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源