论文标题
无人机的自适应路径计划多分辨率语义细分
Adaptive Path Planning for UAVs for Multi-Resolution Semantic Segmentation
论文作者
论文摘要
有效的数据收集方法在帮助我们更好地了解地球及其生态系统方面起着重要作用。在许多应用中,由于其高移动性,低成本和灵活的部署,无人驾驶汽车(UAV)的使用(UAV)迅速增强。一个关键的挑战是计划任务,以最大限度地提高给定时间限制的大环境中获得的数据的价值。例如,这与监视农业领域有关。本文解决了自适应路径计划的问题,以准确地使用UAVS进行语义细分。我们提出了一种在线规划算法,该算法适应无人机路径,以获取在传入图像中检测到的细节所必需区域所需的高分辨率语义分割。这使我们只能在需要的情况下在低海拔地区进行仔细检查,而不会在最大图像分辨率下浪费详尽的映射。我们方法的一个关键特征是用于基于深度学习的架构的新准确性模型,该模型捕获了无人机高度与语义分割精度之间的关系。我们使用现实世界数据对不同领域的方法进行评估,从而证明了解决方案的功效和生成性。
Efficient data collection methods play a major role in helping us better understand the Earth and its ecosystems. In many applications, the usage of unmanned aerial vehicles (UAVs) for monitoring and remote sensing is rapidly gaining momentum due to their high mobility, low cost, and flexible deployment. A key challenge is planning missions to maximize the value of acquired data in large environments given flight time limitations. This is, for example, relevant for monitoring agricultural fields. This paper addresses the problem of adaptive path planning for accurate semantic segmentation of using UAVs. We propose an online planning algorithm which adapts the UAV paths to obtain high-resolution semantic segmentations necessary in areas with fine details as they are detected in incoming images. This enables us to perform close inspections at low altitudes only where required, without wasting energy on exhaustive mapping at maximum image resolution. A key feature of our approach is a new accuracy model for deep learning-based architectures that captures the relationship between UAV altitude and semantic segmentation accuracy. We evaluate our approach on different domains using real-world data, proving the efficacy and generability of our solution.