论文标题
与中间域重新识别跨域人重新识别的源头到目标差距
Bridging the Source-to-target Gap for Cross-domain Person Re-Identification with Intermediate Domains
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Cross-domain person re-identification (re-ID), such as unsupervised domain adaptive (UDA) re-ID, aims to transfer the identity-discriminative knowledge from the source to the target domain. Existing methods commonly consider the source and target domains are isolated from each other, i.e., no intermediate status is modeled between both domains. Directly transferring the knowledge between two isolated domains can be very difficult, especially when the domain gap is large. From a novel perspective, we assume these two domains are not completely isolated, but can be connected through intermediate domains. Instead of directly aligning the source and target domains against each other, we propose to align the source and target domains against their intermediate domains for a smooth knowledge transfer. To discover and utilize these intermediate domains, we propose an Intermediate Domain Module (IDM) and a Mirrors Generation Module (MGM). IDM has two functions: 1) it generates multiple intermediate domains by mixing the hidden-layer features from source and target domains and 2) it dynamically reduces the domain gap between the source / target domain features and the intermediate domain features. While IDM achieves good domain alignment, it introduces a side effect, i.e., the mix-up operation may mix the identities into a new identity and lose the original identities. To compensate this, MGM is introduced by mapping the features into the IDM-generated intermediate domains without changing their original identity. It allows to focus on minimizing domain variations to promote the alignment between the source / target domain and intermediate domains, which reinforces IDM into IDM++. We extensively evaluate our method under both the UDA and domain generalization (DG) scenarios and observe that IDM++ yields consistent performance improvement for cross-domain re-ID, achieving new state of the art.