论文标题
Neumann和Robin边界条件的非本地问题在分数Musielak-Sobolev空间中
Nonlocal problems with Neumann and Robin boundary condition in fractional Musielak-Sobolev spaces
论文作者
论文摘要
在本文中,我们开发了$ a_ {x,y}(。)$ -Neumann derivative的一些属性,用于分数$ a_ {x,y}(。)$ - laplacian运算符。因此,我们证明了通讯函数空间的基本所有权。在本文的第二部分中,通过Ekeland的变异原理和直接的变分方法,我们证明存在非近似诺伊曼和罗宾边界条件的非局部问题的弱解。
In this paper, we develop some properties of the $a_{x,y}(.)$-Neumann derivative for the fractional $a_{x,y}(.)$-Laplacian operator. Therefore we prove the basic proprieties of the correspondent function spaces. In the second part of this paper, by means of Ekeland's variational principal and direct variational approach, we prove the existence of weak solutions for a nonlocal problem with nonhomogeneous Neumann and Robin boundary condition.