论文标题

用于嘈杂图像识别的随机量子神经网络(RQNN)

Random Quantum Neural Networks (RQNN) for Noisy Image Recognition

论文作者

Konar, Debanjan, Gelenbe, Erol, Bhandary, Soham, Sarma, Aditya Das, Cangi, Attila

论文摘要

经典的随机神经网络(RNN)已在决策,信号处理和图像识别任务中证明了有效的应用。但是,它们的实现仅限于确定性的数字系统,以代替随机尖峰信号的随机行为来输出概率分布。我们通过强大的训练策略介绍了新型监督随机量子神经网络(RQNN),以更好地利用尖峰RNN的随机性质。拟议的RQNN采用具有叠加态和振幅编码特征的混合经典量子算法,灵感来自量子信息理论和大脑的空间 - 周期性随机峰值峰值的神经元信息编码的特性。我们通过Pennylane量子模拟器依赖于混合的经典量子算法,广泛验证了我们所提出的RQNN模型,其\ emph {Qubits}。 MNIST,FashionMnist和KMNIST数据集的实验表明,所提出的RQNN模型的平均分类精度为$ 94.9 \%$。此外,实验发现说明了所提出的RQNN在嘈杂设置中的有效性和韧性,与经典的对应物(RNN),经典的尖峰神经网络(SNNS)相比,图像分类的准确性增强,以及经典的卷积神经网络(Alexnet)。此外,RQNN可以处理噪声,这对于各种应用程序很有用,包括NISQ设备中的计算机视觉。 Pytorch代码(https://github.com/darthsimpus/RQN)可在Github上提供,以重现本手稿中报告的结果。

Classical Random Neural Networks (RNNs) have demonstrated effective applications in decision making, signal processing, and image recognition tasks. However, their implementation has been limited to deterministic digital systems that output probability distributions in lieu of stochastic behaviors of random spiking signals. We introduce the novel class of supervised Random Quantum Neural Networks (RQNNs) with a robust training strategy to better exploit the random nature of the spiking RNN. The proposed RQNN employs hybrid classical-quantum algorithms with superposition state and amplitude encoding features, inspired by quantum information theory and the brain's spatial-temporal stochastic spiking property of neuron information encoding. We have extensively validated our proposed RQNN model, relying on hybrid classical-quantum algorithms via the PennyLane Quantum simulator with a limited number of \emph{qubits}. Experiments on the MNIST, FashionMNIST, and KMNIST datasets demonstrate that the proposed RQNN model achieves an average classification accuracy of $94.9\%$. Additionally, the experimental findings illustrate the proposed RQNN's effectiveness and resilience in noisy settings, with enhanced image classification accuracy when compared to the classical counterparts (RNNs), classical Spiking Neural Networks (SNNs), and the classical convolutional neural network (AlexNet). Furthermore, the RQNN can deal with noise, which is useful for various applications, including computer vision in NISQ devices. The PyTorch code (https://github.com/darthsimpus/RQN) is made available on GitHub to reproduce the results reported in this manuscript.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源