论文标题
狄拉克旋转液体中各向异性解义的关键性
Anisotropic deconfined criticality in Dirac spin liquids
论文作者
论文摘要
我们分析了Higgs从U(1)Dirac Spin Liquid到无间隙$ \ MATHBB {Z} _2 $旋转液体的过渡。这个$ \ mathbb {z} _2 $旋转液体与旋转$ s = 1/2 $ s = 1/2 $方格抗fiferromagnet相关,最近的数值研究给出了这种阶段存在的证据,证明了在最近的邻居和下一个邻居和下一个邻居之间的高挫败感中存在的这种阶段价键固体排序的发作。近距离的狄拉克旋转液体不稳定方形晶格上的单极扩散,最终导致Néel或Valence Bond固体订购。因此,我们猜想这个希格斯过渡描述了将无间隙$ \ mathbb {z} _2 $ $ j_1 $ - $ j_2 $型号的旋转液体与两个接近订购阶段之一的模型分开的关键理论。可以通过过渡到不稳定的SU(2)旋转液体以统一的方式描述到其他有序阶段的过渡,我们在先前的工作中已经对其进行了分析。通过研究将u(1)dirac旋转液体与无间隙$ \ mathbb {z} _2 $ spin液体分开的批判性理论,在$ 1/n_f $扩展中旋转液体,$ n_f $与效率数成比例,我们找到了一个稳定的固定点,具有一个anisotropic spinon spinon spinon spinon spinon Experersion undectial nequnical和z $ z。我们通过计算等级Néel和Valence键固体相关函数的角度曲线来分析这种各向异性分散的后果,我们发现它们是不同的。我们还注意到各向异性对单极管缩放维度的影响。
We analyze a Higgs transition from a U(1) Dirac spin liquid to a gapless $\mathbb{Z}_2$ spin liquid. This $\mathbb{Z}_2$ spin liquid is of relevance to the spin $S=1/2$ square lattice antiferromagnet, where recent numerical studies have given evidence for such a phase existing in the regime of high frustration between nearest neighbor and next-nearest neighbor antiferromagnetic interactions (the $J_1$-$J_2$ model), appearing in a parameter regime between the vanishing of Néel order and the onset of valence bond solid ordering. The proximate Dirac spin liquid is unstable to monopole proliferation on the square lattice, ultimately leading to Néel or valence bond solid ordering. As such, we conjecture that this Higgs transition describes the critical theory separating the gapless $\mathbb{Z}_2$ spin liquid of the $J_1$-$J_2$ model from one of the two proximate ordered phases. The transition into the other ordered phase can be described in a unified manner via a transition into an unstable SU(2) spin liquid, which we have analyzed in prior work. By studying the deconfined critical theory separating the U(1) Dirac spin liquid from the gapless $\mathbb{Z}_2$ spin liquid in a $1/N_f$ expansion, with $N_f$ proportional to the number of fermions, we find a stable fixed point with an anisotropic spinon dispersion and a dynamical critical exponent $z \neq 1$. We analyze the consequences of this anisotropic dispersion by calculating the angular profiles of the equal-time Néel and valence bond solid correlation functions, and we find them to be distinct. We also note the influence of the anisotropy on the scaling dimension of monopoles.