论文标题
核裂变途径的弹性带方法
Nudged elastic band approach to nuclear fission pathways
论文作者
论文摘要
核裂变过程是大振幅集体运动的一个戏剧性例子,在该运动中,核经历了一系列形状的变化,然后将其分成不同的片段。该运动可以由集体坐标的多维空间中的途径表示。沿裂变途径的集体作用决定了自发的裂变半衰期以及裂变片段的质量和电荷分布。 我们研究了各种方法的性能和精度,以确定集体空间中的最小动作和最小能量裂变轨迹。 我们在两个和三维集体空间中,应用了轻度的弹性带方法(NEB),基于网格的方法和Euler Lagrange方法。 通过研究通过Hartree-Fock-Bogoliubov理论获得的分析能量表面和现实的势能表面的集体运动来评估裂变途径问题的各种方法的性能。研究了解决方案的独特性和稳定性。 NEB方法能够有效地确定外侧转弯表面上的出口点,该外表面表征了最可能的裂变途径,并构成了裂变研究的关键输入。该方法还可以用于准确计算裂变核的势能表面上确定静态裂变路径的势能表面上的临界点(即局部最小值和鞍点)。 NEB方法是找到最小成效和最小能量裂变轨迹的首选工具。它在超重量核和富含中子的裂变核的大规模裂变计算中特别有用,这有助于天体物理R过程回收。
The nuclear fission process is a dramatic example of the large-amplitude collective motion in which the nucleus undergoes a series of shape changes before splitting into distinct fragments. This motion can be represented by a pathway in the many-dimensional space of collective coordinates. The collective action along the fission pathway determines the spontaneous fission half-lives as well as mass and charge distributions of fission fragments. We study the performance and precision of various methods to determine the minimum action and minimum-energy fission trajectories in the collective space. We apply the nudged elastic band method (NEB), grid-based methods, and Euler Lagrange approach to the collective action minimization in two and three dimensional collective spaces. The performance of various approaches to the fission pathway problem is assessed by studying the collective motion along both analytic energy surfaces and realistic potential energy surfaces obtained with the Hartree-Fock-Bogoliubov theory. The uniqueness and stability of the solutions is studied. The NEB method is capable of efficient determination of the exit points on the outer turning surface that characterize the most probable fission pathway and constitute the key input for fission studies. This method can also be used to accurately compute the critical points (i.e., local minima and saddle points) on the potential energy surface of the fissioning nucleus that determine the static fission path. The NEB method is the tool of choice for finding the least-action and minimum energy fission trajectories. It will be particularly useful in large-scale fission calculation of superheavy nuclei and neutron-rich fissioning nuclei contributing to the astrophysical r-process recycling.