论文标题

强制和未强制自摩托颗粒的动力学

Dynamics of forced and unforced autophoretic particles

论文作者

Kailasham, R., Khair, Aditya S.

论文摘要

当各向同性散发或吸收溶质分子的化学活性或自生颗粒时,当它们的活性的增加超出关键的péclet数($ pe $)时,会自发自发自发。在这里,我们使用基于光谱元素的方法进行数值计算,该方法对不稳定直线翻译中的刚性,球形自摩托粒子进行了计算。粒子可以自由悬浮(或“不强制”)或受外力场(或“强制”)的约束。随着$ pe $的增加,未强制的粒子的运动通过四个政权发展:静止,稳定,搅动和混乱。粒子在静止状态下是固定的,溶质轮廓是粒子的各向同性。在$ pe = 4 $时,溶质剖面中的前自AFT对称性被损坏,从而导致其稳定的自我传播。我们的计算表明,正如先前的研究所预测的那样,自我速度速度与$ pe-4 $接近自我启动的速度线性缩放。 $ pe $的进一步增加导致在$ pe \ \ \ \ 27 $处的激动人心的态度,其中流体经历了再循环,而粒子基本上保持固定。随着$ pe $的进一步增加,粒子动力学以混沌振荡为标志,$ pe \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ osims及更高,我们以均方根位移和粒子的速度自相关为特征。我们在弱外力下的自生粒子的结果与最近的渐近预测非常吻合(Saha,Yariv和Schnitzer,J。FluidMech。,第916卷,A47,2021)。此外,我们证明了外力的强度和时间安排可能会调整以调节大型$ pe $的混乱动力学。

Chemically active, or autophoretic, particles that isotropically emit or absorb solute molecules undergo spontaneous self-propulsion when their activity is increased beyond a critical Péclet number ($Pe$). Here, we conduct numerical computations, using a spectral-element based method, of a rigid, spherical autophoretic particle in unsteady rectilinear translation. The particle can be freely suspended (or `unforced') or subject to an external force field (or `forced'). The motion of an unforced particle progresses through four regimes as $Pe$ is increased: quiescent, steady, stirring, and chaos. The particle is stationary in the quiescent regime, and the solute profile is isotropic about the particle. At $Pe=4$ the fore-aft symmetry in the solute profile is broken, resulting in its steady self-propulsion. Our computations indicate that the self-propulsion speed scales linearly with $Pe-4$ near the onset of self-propulsion, as has been predicted in previous studies. A further increase in $Pe$ gives rise to the stirring regime at $Pe\approx27$, where the fluid undergoes recirculation, while the particle remains essentially stationary. As $Pe$ is increased even further, the particle dynamics are marked by chaotic oscillations at $Pe\approx55$ and higher, which we characterize in terms of the mean square displacement and velocity autocorrelation of the particle. Our results for an autophoretic particle under a weak external force are in good agreement with recent asymptotic predictions (Saha, Yariv, and Schnitzer, J. Fluid Mech., vol. 916, A47, 2021). Additionally, we demonstrate that the strength and temporal scheduling of the external force may be tuned to modulate the chaotic dynamics at large $Pe$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源