论文标题

通过知识转移网络在异质图内零射传输学习

Zero-shot Transfer Learning within a Heterogeneous Graph via Knowledge Transfer Networks

论文作者

Yoon, Minji, Palowitch, John, Zelle, Dustin, Hu, Ziniu, Salakhutdinov, Ruslan, Perozzi, Bryan

论文摘要

从社交或电子商务平台等工业生态系统连续发出的数据通常表示为由多种节点/边缘类型组成的异质图(HG)。使用称为异质图神经网络(HGNN)的HGS的最先进的图形学习方法用于学习深层上下文信息形式表示。但是,来自工业应用程序的许多HG数据集都遭受节点类型之间的标签失衡。由于没有直接的方法可以使用扎根于不同节点类型的标签,因此HGNN仅应用于具有丰富标签的几个节点类型。我们为HGNN提出了一个称为知识转移网络(KTN)的零射击传输学习模块,该模块通过HG中给出的丰富关系信息将知识从标签丰富的节点类型转移到零标记的节点类型。 KTN源自我们在这项工作中引入的理论关系,在HGNN模型中给出的每个节点类型的不同特征提取器之间。 KTN将6种不同类型的HGNN模型的性能提高了960%,以推断零标记的节点类型,并且在HGS上的18个不同的转移学习任务中,最高的最先进的转移学习基线胜过最高的最高转移学习基准。

Data continuously emitted from industrial ecosystems such as social or e-commerce platforms are commonly represented as heterogeneous graphs (HG) composed of multiple node/edge types. State-of-the-art graph learning methods for HGs known as heterogeneous graph neural networks (HGNNs) are applied to learn deep context-informed node representations. However, many HG datasets from industrial applications suffer from label imbalance between node types. As there is no direct way to learn using labels rooted at different node types, HGNNs have been applied to only a few node types with abundant labels. We propose a zero-shot transfer learning module for HGNNs called a Knowledge Transfer Network (KTN) that transfers knowledge from label-abundant node types to zero-labeled node types through rich relational information given in the HG. KTN is derived from the theoretical relationship, which we introduce in this work, between distinct feature extractors for each node type given in an HGNN model. KTN improves performance of 6 different types of HGNN models by up to 960% for inference on zero-labeled node types and outperforms state-of-the-art transfer learning baselines by up to 73% across 18 different transfer learning tasks on HGs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源