论文标题

通过双分支网络进行涂鸦监督的医学图像分割,并动态混合伪标签监督

Scribble-Supervised Medical Image Segmentation via Dual-Branch Network and Dynamically Mixed Pseudo Labels Supervision

论文作者

Luo, Xiangde, Hu, Minhao, Liao, Wenjun, Zhai, Shuwei, Song, Tao, Wang, Guotai, Zhang, Shaoting

论文摘要

医疗图像分割在计算机辅助诊断,治疗计划和后续过程中起不可替代的作用。收集和注释大型数据集对于训练强大的分割模型至关重要,但是生产高质量的分割口罩是一个昂贵且耗时的过程。最近,使用稀疏注释(点,涂鸦,边界框)进行网络培训的弱监督学习已经取得了令人鼓舞的性能,并显示了降低注释成本的潜力。但是,由于稀疏注释的监督信号有限,直接将其用于网络培训仍然具有挑战性。在这项工作中,我们提出了一种简单而有效的涂鸦图像分割方法,并将其应用于心脏MRI分割。具体而言,我们采用一个带有一个编码器和两个略有不同解码器的双分支网络进行图像分割,并动态混合了两个解码器的预测,以生成伪标签以进行辅助监督。通过结合涂鸦监督和辅助伪标签的监督,双支分支网络可以有效地从端到端的涂鸦注释中学习。公共ACDC数据集上的实验表明,我们的方法的性能优于当前的涂鸦监督分割方法,并且表现优于几种半监督分割方法。

Medical image segmentation plays an irreplaceable role in computer-assisted diagnosis, treatment planning, and following-up. Collecting and annotating a large-scale dataset is crucial to training a powerful segmentation model, but producing high-quality segmentation masks is an expensive and time-consuming procedure. Recently, weakly-supervised learning that uses sparse annotations (points, scribbles, bounding boxes) for network training has achieved encouraging performance and shown the potential for annotation cost reduction. However, due to the limited supervision signal of sparse annotations, it is still challenging to employ them for networks training directly. In this work, we propose a simple yet efficient scribble-supervised image segmentation method and apply it to cardiac MRI segmentation. Specifically, we employ a dual-branch network with one encoder and two slightly different decoders for image segmentation and dynamically mix the two decoders' predictions to generate pseudo labels for auxiliary supervision. By combining the scribble supervision and auxiliary pseudo labels supervision, the dual-branch network can efficiently learn from scribble annotations end-to-end. Experiments on the public ACDC dataset show that our method performs better than current scribble-supervised segmentation methods and also outperforms several semi-supervised segmentation methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源