论文标题

对抗模式:构建强大的Android恶意软件分类器

Adversarial Patterns: Building Robust Android Malware Classifiers

论文作者

Bhusal, Dipkamal, Rastogi, Nidhi

论文摘要

机器学习模型越来越多地在各个领域(例如医学,商业,自动驾驶汽车和网络安全)中采用,以分析大量数据,检测模式并做出预测或建议。在网络安全领域,这些模型在恶意软件检测方面取得了重大改进。但是,尽管他们能够从非结构化数据中理解复杂的模式,但这些模型仍易受对恶意软件样本进行稍微修改的对抗性攻击的影响,从而导致从恶性肿瘤到良性的错误分类。已经提出了许多防御方法来检测这种对抗性攻击或改善模型鲁棒性。这些方法导致了多种攻击和防御技术,并出现了一个称为“对抗机器学习”的领域。在本调查文件中,我们在Android恶意软件分类器的背景下对对抗机器学习进行了全面综述。 Android是全球使用最广泛的操作系统,是恶意药物的简单目标。该论文首先介绍了Android恶意软件分类器的广泛背景,然后检查了对抗攻击和防御方面的最新进步。最后,本文提供了设计强大的恶意软件分类器的指南,并概述了未来的研究指导。

Machine learning models are increasingly being adopted across various fields, such as medicine, business, autonomous vehicles, and cybersecurity, to analyze vast amounts of data, detect patterns, and make predictions or recommendations. In the field of cybersecurity, these models have made significant improvements in malware detection. However, despite their ability to understand complex patterns from unstructured data, these models are susceptible to adversarial attacks that perform slight modifications in malware samples, leading to misclassification from malignant to benign. Numerous defense approaches have been proposed to either detect such adversarial attacks or improve model robustness. These approaches have resulted in a multitude of attack and defense techniques and the emergence of a field known as `adversarial machine learning.' In this survey paper, we provide a comprehensive review of adversarial machine learning in the context of Android malware classifiers. Android is the most widely used operating system globally and is an easy target for malicious agents. The paper first presents an extensive background on Android malware classifiers, followed by an examination of the latest advancements in adversarial attacks and defenses. Finally, the paper provides guidelines for designing robust malware classifiers and outlines research directions for the future.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源