论文标题
储层计算在Skyrmion Crystal中带有自旋波的计算
Reservoir Computing with Spin Waves in Skyrmion Crystal
论文作者
论文摘要
磁空是纳米旋转纹理的特征,其特征是磁铁中的量化拓扑不变,并且通常以一种结晶的形式出现,称为Skyrmion晶体,在外部磁场中。我们建议,拥有Skyrmion Crystal的磁铁具有很高的应用用于储层计算的潜力,这是受到人类大脑功能启发的最成功的信息处理技术之一。我们的基于天际的储层利用了磁化的进动动力学,即自旋波,在天空晶体中传播。由于自旋波动力学的复杂干扰和缓慢的松弛,Skyrmion Spin-Wave储层具有储层计算所需的几个重要特征,例如概括能力,非线性和短期内存。我们通过施加三个标准任务来测试储层的性能,即持续估计任务,短期内存任务和奇偶校验检查任务来研究这些属性。通过这些研究,我们证明了磁性天际晶体是用于旋转储层设备的有前途的材料。由于在静态磁场下通过自组织过程在磁铁中自发出现磁性天际,因此与其他先前提出的磁性储层相比,拟议的天际储层不需要先进的纳米化制剂,也不需要复杂的生产制造。预计我们的建议将在高性能的旋转储层研究中实现突破。
Magnetic skyrmions are nanometric spin textures characterized by a quantized topological invariant in magnets and often emerge in a crystallized form called skyrmion crystal in an external magnetic field. We propose that magnets hosting a skyrmion crystal possess high potential for application to reservoir computing, which is one of the most successful information processing techniques inspired by functions of human brains. Our skyrmion-based reservoir exploits precession dynamics of magnetizations, i.e., spin waves, propagating in the skyrmion crystal. Because of complex interferences and slow relaxations of the spin-wave dynamics, the skyrmion spin-wave reservoir attains several important characteristics required for reservoir computing, e.g., the generalization ability, the nonlinearity, and the short-term memory. We investigate these properties by imposing three standard tasks to test the performances of reservoir, i.e., the duration-estimation task, the short-term memory task, and the parity-check task. Through these investigations, we demonstrate that magnetic skyrmion crystals are promising materials for spintronics reservoir devices. Because magnetic skyrmions emerge spontaneously in magnets via self-organization process under application of a static magnetic field, the proposed skyrmion reservoir requires neither advanced nanofabrication nor complicated manufacturing for production in contrast to other previously proposed magnetic reservoirs constructed with fabricated spintronics devices. Our proposal is expected to realize a breakthrough in the research of spintronics reservoirs of high performance.