论文标题
具有非对角线边界场的自旋1海森堡链的热力学极限和边界能
Thermodynamic limit and boundary energy of the spin-1 Heisenberg chain with non-diagonal boundary fields
论文作者
论文摘要
研究了具有非对角线边界场的各向同性自旋1海森堡链的热力学极限和边界能。基态$ t-q $关系中不均匀项的有限尺寸缩放属性由密度矩阵重新归一化组计算。根据我们的发现,可以从具有平行边界场的相关模型的Bethe Ansatz方程中获得系统中系统的边界能。这些结果可以直接将其推广到$ SU(2)$对称高旋转Heisenberg模型。
The thermodynamic limit and boundary energy of the isotropic spin-1 Heisenberg chain with non-diagonal boundary fields are studied. The finite size scaling properties of the inhomogeneous term in the $ T-Q $ relation at the ground state are calculated by the density matrix renormalization group. Based on our findings, the boundary energy of the system in the thermodynamic limit can be obtained from Bethe ansatz equations of a related model with parallel boundary fields. These results can be generalized to the $SU(2)$ symmetric high spin Heisenberg model directly.