论文标题
由分子键桥接的流体膜的剥离动力学:移动或破裂
Peeling dynamics of fluid membranes bridged by molecular bonds: moving or breaking
论文作者
论文摘要
生物粘附是在多个尺度上运行的复杂生物的关键机械功能。在细胞尺度上,细胞 - 细胞粘附非常可调,可以在发育,体内平衡和疾病期间实现凝聚力和锻造性。这种适应性的粘附在物理上由嵌入流体膜中的横向移动分子之间的瞬时键。因此,与在固体或固体流体接口处的特定粘附不同,在流体流体界面上脱皮可以通过破坏键,移动键或通过两者的组合来进行。债券流动性提供的额外自由度如何改变剥离的力学。为了解决这个问题,我们开发了一个理论模型,将自谐的扩散,反应和力学耦合。横向迁移率和反应速率决定了不同的剥离状态。在以扩散为主的Stefan样制度中,键运动建立了自动化的动力学,从而增加了有效的粘附断裂能。反应主导的状态表现出行进的剥离溶液,其中小规模扩散和边缘解开控制剥离速度。在混合反应扩散状态下,通过键运动加强竞争,通过以力依赖性方式键断裂,定义了粘附斑的强度。反过来,贴片强度取决于分子特性,例如键刚度,力灵敏度或拥挤。因此,我们建立了在细胞组织和工程仿生系统中可调节内聚力的物理规则。
Biological adhesion is a critical mechanical function of complex organisms operating at multiple scales. At the cellular scale, cell-cell adhesion is remarkably tunable to enable both cohesion and malleability during development, homeostasis and disease. Such adaptable adhesion is physically supported by transient bonds between laterally mobile molecules embedded in fluid membranes. Thus, unlike specific adhesion at solid-solid or solid-fluid interfaces, peeling at fluid-fluid interfaces can proceed by breaking bonds, by moving bonds, or by a combination of both. How the additional degree of freedom provided by bond mobility changes the mechanics of peeling is not understood. To address this, we develop a theoretical model coupling self-consistently diffusion, reactions and mechanics. Lateral mobility and reaction rates determine distinct peeling regimes. In a diffusion-dominated Stefan-like regime, bond motion establishes self-stabilizing dynamics that increase the effective adhesion fracture energy. A reaction-dominated regime exhibits traveling peeling solutions where small-scale diffusion and marginal unbinding control peeling speed. In a mixed reaction-diffusion regime, strengthening by bond motion competes with weakening by bond breaking in a force-dependent manner, defining the strength of the adhesion patch. In turn, patch strength depends on molecular properties such as bond stiffness, force sensitivity, or crowding. We thus establish the physical rules enabling tunable cohesion in cellular tissues and in engineered biomimetic systems.