论文标题

$ l^p $解决方案的全球存在和分析性,可压缩流体模型

Global existence and analyticity of $L^p$ solutions to the compressible fluid model of Korteweg type

论文作者

Song, Zihao, Xu, Jiang

论文摘要

我们关注的是$ \ Mathbb {r}^{d}(d \ geq2)中的方程系统,该$可以用作相位过渡模型。对于零声速$ p'(ρ^{\ ast})= 0 $,发现线性化系统允许\ textit {纯粹}抛物线结构,这使我们能够建立$ l^p $ -type $ l^p $ -type of l^p $ type of $ l^p $ type的全球及时存在和Gevrey强大解决方案的分析。确切地说,如果完整的粘度系数和毛细管系数满足$ \barν^2 \ geq4 \barκ$,则声波在可压缩的流体中不可用。因此,可以将先前的$ l^2 $限制在密度和速度的低频率上,可以将$ 1 \ leq p \ leq d $如果$ d \ geq2 $提高到一般的$ l^p $版本。证明主要依赖于新的非线性BESOV(-GEVREY)功能的组成。

We are concerned with a system of equations in $\mathbb{R}^{d}(d\geq2)$ governing the evolution of isothermal, viscous and compressible fluids of Korteweg type, that can be used as a phase transition model. In the case of zero sound speed $P'(ρ^{\ast})=0$, it is found that the linearized system admits the \textit{purely} parabolic structure, which enables us to establish the global-in-time existence and Gevrey analyticity of strong solutions in hybrid Besov spaces of $L^p$-type. Precisely, if the full viscosity coefficient and capillary coefficient satisfy $\barν^2\geq4\barκ$, then the acoustic waves are not available in compressible fluids. Consequently, the prior $L^2$ bounds on the low frequencies of density and velocity could be improved to the general $L^p$ version with $1\leq p\leq d$ if $d\geq2$. The proof mainly relies on new nonlinear Besov (-Gevrey) estimates for product and composition of functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源