论文标题
Kagome-Lattice Co $ _3 $ sn $ _2 $ s $ _2 $ _2 $ _2 $的shandite Films在Kagome-Lattice Co中相互关联的异常大厅和旋转厅效应
Intercorrelated anomalous Hall and spin Hall effect in kagome-lattice Co$_3$Sn$_2$S$_2$-based shandite films
论文作者
论文摘要
磁性Weyl半法(MWSM)的特征是线性分散带和手性韦尔节点对与破裂的时间逆向对称性相关。 MWSM的标志之一是出现了大型固有的异常效应。在将MWSM在其库里温度以上加热时,磁力消失了,而交换式的Weyl Point对塌陷成偶有变化的Dirac状态。在这里,我们揭示了这些DIRAC节点在顺磁性状态下通过自旋大厅效应在室温下有效自旋发电的吸引力。 NI和IN被引入在原型MWSM CO $ _3 $ sn $ _2 $ s $ _2 $ shandite Film and shandite Film并调整Fermi级别的原型MWSM CO $ _3 $ _3 $ _3 $ _3 $ _3 $ _3 $ _3 $ _3 $ _3 $ sn。室温下顺磁性shandite的自旋霍尔电导率的组成依赖性类似于低温下的铁磁性shandite的异常霍尔电导率;表现出类似峰的依赖性,围绕Ni取代的Co $ _2 $ ni $ _1 $ _1 $ sn $ _2 $ s $ _2 $和UNDEPED CO $ _3 $ sn $ _2 $ _2 $ S $ _2 $组成。峰值移位与越过铁磁 - 磁磁过渡时电子填充的重新分布是一致的,这表明两个大厅效应之间的相互关系。我们的发现突出了一种新的旋转厅材料的策略,在文献中丰富的实验性异常效果数据的指导下。
Magnetic Weyl semimetals (mWSMs) are characterized by linearly dispersive bands with chiral Weyl node pairs associated with broken time reversal symmetry. One of the hallmarks of mWSMs is the emergence of large intrinsic anomalous Hall effect. On heating the mWSM above its Curie temperature, the magnetism vanishes while exchange-split Weyl point pairs collapse into doubly-degenerated gapped Dirac states. Here, we reveal the attractive potential of these Dirac nodes in paramagnetic state for efficient spin current generation at room temperature via the spin Hall effect. Ni and In are introduced to separately substitute Co and Sn in a prototypal mWSM Co$_3$Sn$_2$S$_2$ shandite film and tune the Fermi level. Composition dependence of spin Hall conductivity for paramagnetic shandite at room temperature resembles that of anomalous Hall conductivity for ferromagnetic shandite at low temperature; exhibiting peak-like dependence centering around the Ni-substituted Co$_2$Ni$_1$Sn$_2$S$_2$ and undoped Co$_3$Sn$_2$S$_2$ composition, respectively. The peak shift is consistent with the redistribution of electrons' filling upon crossing the ferromagnetic-paramagnetic transition, suggesting intercorrelation between the two Hall effects. Our findings highlight a novel strategy for the quest of spin Hall materials, guided by the abundant experimental anomalous Hall effect data of ferromagnets in the literature.