论文标题
人类机器人协作如何影响建筑生产力:基于代理的多保真建模方法
How human-robot collaboration impacts construction productivity: an agent-based multi-fidelity modeling approach
论文作者
论文摘要
尽管建筑机器人在研究和实践中引起了数十年的关注,但人类机器人协作(HRC)对于执行复杂的建筑任务仍然很重要。考虑到其复杂性和独特性,目前尚不清楚HRC流程将如何影响建筑生产率。为此,引入了基于代理的(AB)多保真建模方法,以模拟和评估HRC如何影响施工生产率。首先是针对一个机器人的场景提出的高保真模型。然后,建立了低保真模型来提取关键参数,以捕获方案之间的内部关系。多保真模型共同使用,以模拟复杂的场景。仿真和经验表明:1)提出的方法是可行且灵活的,用于模拟复杂的HRC过程,并且可以涵盖多种协作和互动模式; 2)当只有一个机器人时,补充策略的影响很简单,其中较低的检查间隔(CI)和较高的补充限制(SL)将提高生产率。但是,由于工人有限时间的机器人之间的内部竞争,当机器人之间的内部竞争中有更多的机器人时,影响会变得更加复杂。 3)即使人类机器人比率保持不变,每个机器人的生产率也会提高,即使有更多的机器人和工人。 4)在我们的实验中,引入机器人与工人之间的积极互动可以显着提高生产率,最多可以提高22%,这进一步取决于补充策略和人类机器人比率。总体而言,这项研究为模拟和评估HRC对生产力的影响以及如何优化HRC的宝贵见解做出了综合方法,以提高性能。
Though construction robots have drawn attention in research and practice for decades, human-robot collaboration (HRC) remains important to conduct complex construction tasks. Considering its complexity and uniqueness, it is still unclear how HRC process will impact construction productivity. To this end, an agent-based (AB) multi-fidelity modeling approach is introduced to simulate and evaluate how HRC influences construction productivity. A high-fidelity model is first proposed for a scenario with one robot. Then, a low-fidelity model is established to extract key parameters that capture the inner relationship among scenarios. The multi-fidelity models work together to simulate complex scenarios. Simulation and experiements show that: 1) the proposed approach is feasible and flexible for simulation of complex HRC processes, and can cover multiple collaboration and interaction modes; 2) the influence of the supplement strategy is simple when there is only one robot, where lower Check Interval (CI) and higher Supplement Limit (SL) will improve productivity. But the influence becomes much more complicated when there are more robots due to the internal competition among robots for the limited time of workers; 3) the productivity per robot improves when there are more robots and workers, even if the human-robot ratio remains the same; 4) introducing proactive interaction between robots and workers could improve productivity significantly, up to 22% in our experiments, which further depends on the supplement strategy and the human-robot ratio. Overall, this research contributes an integrated approach to simulate and evaluate HRC's impacts on productivity as well as valuable insights on how to optimize HRC for better performance.