论文标题
基于视觉的端到端自动驾驶的可区分控制障碍功能
Differentiable Control Barrier Functions for Vision-based End-to-End Autonomous Driving
论文作者
论文摘要
由于缺乏与国家感知控制方案不同的基于基础真相的信息,因此确保基于感知的学习系统的安全性是有挑战性的。在本文中,我们为基于视觉的端到端自动驾驶提供了安全保证的学习框架。为此,我们设计了一个配备有可区分控制屏障功能(DCBF)的学习系统,该功能是通过梯度下降端到端训练的。我们的模型由常规的神经网络架构和DCBF组成。它们可以大规模解释,在有限的培训数据下实现出色的测试性能,并且在一系列自主驾驶场景(例如巷道保持和避免障碍物)中保证了安全性。我们在模拟环境中评估了我们的框架,并在一辆真正的自动驾驶汽车上进行了测试,通过增强现实(AR)和真实的停放车辆实现了安全的巷道和避免障碍物。
Guaranteeing safety of perception-based learning systems is challenging due to the absence of ground-truth state information unlike in state-aware control scenarios. In this paper, we introduce a safety guaranteed learning framework for vision-based end-to-end autonomous driving. To this end, we design a learning system equipped with differentiable control barrier functions (dCBFs) that is trained end-to-end by gradient descent. Our models are composed of conventional neural network architectures and dCBFs. They are interpretable at scale, achieve great test performance under limited training data, and are safety guaranteed in a series of autonomous driving scenarios such as lane keeping and obstacle avoidance. We evaluated our framework in a sim-to-real environment, and tested on a real autonomous car, achieving safe lane following and obstacle avoidance via Augmented Reality (AR) and real parked vehicles.