论文标题
旋转环境的非马克维亚量子状态扩散
Non-Markovian Quantum State Diffusion for Spin Environments
论文作者
论文摘要
我们介绍了一种精确的开放系统方法,以描述量子系统的动力学,该量子系统与包括旋转的特定类型的环境(例如中央旋转系统)。我们的理论类似于已建立的非马克维亚量子状态扩散(NMQSD)理论,但用于自旋浴而不是高斯浴。该方法使我们能够表示系统的降低状态是随机发展的纯状态的集合平均值。我们为在零和有限温度下的任意线性旋转环境提出了一个综合理论。此外,我们引入了一种层次扩展方法,该方法可以实现随机纯状态的时间演变的数值计算,从而促进了相关强耦合态度的开放系统问题的数值解决方案。
We introduce an exact open system method to describe the dynamics of quantum systems that are strongly coupled to specific types of environments comprising of spins, such as central spin systems. Our theory is similar to the established non-Markovian quantum state diffusion (NMQSD) theory, but for a spin bath instead of a Gaussian bath. The method allows us to represent the time-evolved reduced state of the system as an ensemble average of stochastically evolving pure states. We present a comprehensive theory for arbitrary linear spin environments at both zero and finite temperatures. Furthermore, we introduce a hierarchical expansion method that enables the numerical computation of the time evolution of the stochastic pure states, facilitating a numerical solution of the open system problem in relevant strong coupling regimes.