论文标题

热结构因子与一般双线性汉密尔顿人的耦合常数之间的一一对应关系

One-to-one correspondence between thermal structure factors and coupling constants of general bilinear Hamiltonians

论文作者

Murta, Bruno, Fernández-Rossier, J.

论文摘要

一个定理在旋转算子中建立了一类量子自旋汉密尔顿双线性的一类量子旋转汉密尔顿双线性之间的零静态旋转旋转相关器与耦合常数之间的一对一关系,J。J.Quintanilla是由Hohenberg-Kohn Theorem在密度函数理论中的精神的论点。 Quintanilla的定理为使用旋转结构因子作为输入数据为量子旋转的哈密顿学习提供了坚定的理论基础。在这里,我们将定理的有效性扩展到两个方向。首先,遵循与Mermin相同的方法,将证明扩展到有限温度的自旋结构因子的情况,从而确保将该定理应用于实验数据是合理的。其次,我们注意到该定理适用于所有类型的汉密尔顿人,以双线性操作员的总和表示,因此它也可以将密度密度相关器与库仑矩阵元素相关联,以在最低的Landau级别相互作用。

A theorem that establishes a one-to-one relation between zero-temperature static spin-spin correlators and coupling constants for a general class of quantum spin Hamiltonians bilinear in the spin operators has been recently established by J. Quintanilla, using an argument in the spirit of the Hohenberg-Kohn theorem in density functional theory. Quintanilla's theorem gives a firm theoretical foundation to quantum spin Hamiltonian learning using spin structure factors as input data. Here we extend the validity of the theorem in two directions. First, following the same approach as Mermin, the proof is extended to the case of finite-temperature spin structure factors, thus ensuring that the application of this theorem to experimental data is sound. Second, we note that this theorem applies to all types of Hamiltonians expressed as sums of bilinear operators, so that it can also relate the density-density correlators to the Coulomb matrix elements for interacting electrons in the lowest Landau level.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源