论文标题

符号状态估计与鉴定有关接触的操纵任务的谓词

Symbolic State Estimation with Predicates for Contact-Rich Manipulation Tasks

论文作者

Migimatsu, Toki, Lian, Wenzhao, Bohg, Jeannette, Schaal, Stefan

论文摘要

操纵任务通常需要机器人根据自己发现的状态来调整其感觉运动技能。以钉孔为例:一旦将钉子与孔对齐后,机器人应将钉子向下推动。尽管高级执行框架(例如州机器和行为树)通常用于形式化此类决策问题,但这些框架需要一种机制来检测高级符号状态。手工制作启发式方法以识别符号状态可能是脆弱的,并且使用数据驱动的方法可以产生嘈杂的预测,尤其是在使用有限的数据集工作时,在现实世界中常见的机器人方案中常见。本文提出了一种贝叶斯状态估计方法,以预测具有谓词分类器的符号状态。此方法需要很少的培训数据,并且可以融合来自多种传感器方式的嘈杂观测。我们在一组现实世界中的孔洞和连接器插入任务上评估了我们的框架,展示了其对符号状态进行分类和概括为看不见的任务的能力,优于基线方法。我们还展示了我们方法改善实际机器人操作策略鲁棒性的能力。

Manipulation tasks often require a robot to adjust its sensorimotor skills based on the state it finds itself in. Taking peg-in-hole as an example: once the peg is aligned with the hole, the robot should push the peg downwards. While high level execution frameworks such as state machines and behavior trees are commonly used to formalize such decision-making problems, these frameworks require a mechanism to detect the high-level symbolic state. Handcrafting heuristics to identify symbolic states can be brittle, and using data-driven methods can produce noisy predictions, particularly when working with limited datasets, as is common in real-world robotic scenarios. This paper proposes a Bayesian state estimation method to predict symbolic states with predicate classifiers. This method requires little training data and allows fusing noisy observations from multiple sensor modalities. We evaluate our framework on a set of real-world peg-in-hole and connector-socket insertion tasks, demonstrating its ability to classify symbolic states and to generalize to unseen tasks, outperforming baseline methods. We also demonstrate the ability of our method to improve the robustness of manipulation policies on a real robot.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源