论文标题

脊,神经网络和ra换

Ridges, Neural Networks, and the Radon Transform

论文作者

Unser, Michael

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

A ridge is a function that is characterized by a one-dimensional profile (activation) and a multidimensional direction vector. Ridges appear in the theory of neural networks as functional descriptors of the effect of a neuron, with the direction vector being encoded in the linear weights. In this paper, we investigate properties of the Radon transform in relation to ridges and to the characterization of neural networks. We introduce a broad category of hyper-spherical Banach subspaces (including the relevant subspace of measures) over which the back-projection operator is invertible. We also give conditions under which the back-projection operator is extendable to the full parent space with its null space being identifiable as a Banach complement. Starting from first principles, we then characterize the sampling functionals that are in the range of the filtered Radon transform. Next, we extend the definition of ridges for any distributional profile and determine their (filtered) Radon transform in full generality. Finally, we apply our formalism to clarify and simplify some of the results and proofs on the optimality of ReLU networks that have appeared in the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源