论文标题

在重力波数据分析中扩展Fisher信息矩阵

Extending the Fisher Information Matrix in Gravitational-wave Data Analysis

论文作者

Wang, Ziming, Liu, Chang, Zhao, Junjie, Shao, Lijing

论文摘要

Fisher信息矩阵(FM)在许多物理学领域的预测和推论中起着重要作用。在参数空间中使用高斯可能性近似的快速参数估计,FM只能给出参数的椭圆形后方轮廓,而丢失了超过高斯的高阶信息。我们使用可能性(DALI)的导数近似(DALI)扩展了重力波(GW)数据分析的FM,这是一种扩展可能性的方法,同时保持其正确定和可正常化的每个顺序,以进行更准确的预测和推论。当应用于两个真实的GW事件时,GW150914和GW170817,DALI在最佳情况下可以将FM近似值和实际后部之间的差异减少5倍。 DALI和FM的计算时间在相同的数量级,而获得真正的全后验的计算时间将需要更长的数量级。除了更准确的近似值外,DALI的高阶校正还提供了FM分析的快速评估,并为计算密集型的复杂采样技术提供了建议。我们建议在GW数据分析中使用DALI方法作为FM方法的扩展,以提高准确性,同时仍保持速度。

The Fisher information matrix (FM) plays an important role in forecasts and inferences in many areas of physics. While giving fast parameter estimation with the Gaussian likelihood approximation in the parameter space, the FM can only give the ellipsoidal posterior contours of parameters and lose the higher-order information beyond Gaussianity. We extend the FM in gravitational-wave (GW) data analysis using the Derivative Approximation for LIkelihoods (DALI), a method to expand the likelihood while keeping it positive definite and normalizable at every order, for more accurate forecasts and inferences. When applied to the two real GW events, GW150914 and GW170817, DALI can reduce the difference between FM approximation and the real posterior by 5 times in the best case. The calculation time of DALI and FM is at the same order of magnitude, while obtaining the real full posterior will take several orders of magnitude longer. Besides more accurate approximations, higher-order correction from DALI provides a fast assessment on the FM analysis and gives suggestions for complex sampling techniques which are computationally intensive. We recommend using the DALI method as an extension to the FM method in GW data analysis to pursue better accuracy while still keeping the speed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源