论文标题
随机模板库的性能
Performance of Random Template Banks
论文作者
论文摘要
当搜索新的重力波或电磁源时,$ n $信号参数(质量,天空位置,频率等)是未知的。实际上,一个人在参数空间中的一个离散点(称为模板库)中寻找信号。这些可以通过将模板放置在参数空间中的随机选择点上,将它们系统地构造为晶格,也可以作为晶格构造。在这里,我们计算出$ n $二维的随机模板库丢失的信号的比例(与一个非常分布的银行相比)。将此分数与包含相同数量的网格点的最佳基于晶格的模板库进行比较。对于尺寸,$ n <4 $基于晶格的模板银行的表现大大优于随机模板。但是,值得注意的是,对于尺寸$ n> 8 $,差异可以忽略不计。在高维度中,随机模板库的表现优于最著名的晶格。
When searching for new gravitational-wave or electromagnetic sources, the $n$ signal parameters (masses, sky location, frequencies,...) are unknown. In practice, one hunts for signals at a discrete set of points in parameter space, called a template bank. These may be constructed systematically as a lattice, or alternatively, by placing templates at randomly selected points in parameter space. Here, we calculate the fraction of signals lost by an $n$-dimensional random template bank (compared to a very finely spaced bank). This fraction is compared to the corresponding loss fraction for the best possible lattice-based template banks containing the same number of grid points. For dimensions $n<4$ the lattice-based template banks significantly outperform the random ones. However, remarkably, for dimensions $n>8$, the difference is negligible. In high dimensions, random template banks outperform the best known lattices.