论文标题
朝着稳健的零件意识实例细分用于工业垃圾箱
Towards Robust Part-aware Instance Segmentation for Industrial Bin Picking
论文作者
论文摘要
工业垃圾箱采摘是一项具有挑战性的任务,需要对单个对象实例进行准确稳健的分割。特别是,工业物体可能具有不规则的形状,即薄而凹形,而在bin挑选的场景中,物体通常会塞满强烈的闭塞。为了应对这些挑战,我们制定了一种新颖的零件意识实例分割管道。关键思想是将工业对象分解为相关的近似凸段,并通过零件级分段增强对象级分割。我们设计了一个部分感知的网络,以预测部分面具和部分部分偏移,然后是零件聚合模块,以将公认的部分组装成实例。为了指导网络学习,我们还提出了一个自动标签解耦方案,以从实例级别的标签中生成地面真相级标签。最后,我们贡献了第一个实例分割数据集,其中包含各种薄且具有非平凡形状的工业对象。对各种工业对象的广泛实验结果表明,与最先进的方法相比,我们的方法可以实现最佳的分割结果。
Industrial bin picking is a challenging task that requires accurate and robust segmentation of individual object instances. Particularly, industrial objects can have irregular shapes, that is, thin and concave, whereas in bin-picking scenarios, objects are often closely packed with strong occlusion. To address these challenges, we formulate a novel part-aware instance segmentation pipeline. The key idea is to decompose industrial objects into correlated approximate convex parts and enhance the object-level segmentation with part-level segmentation. We design a part-aware network to predict part masks and part-to-part offsets, followed by a part aggregation module to assemble the recognized parts into instances. To guide the network learning, we also propose an automatic label decoupling scheme to generate ground-truth part-level labels from instance-level labels. Finally, we contribute the first instance segmentation dataset, which contains a variety of industrial objects that are thin and have non-trivial shapes. Extensive experimental results on various industrial objects demonstrate that our method can achieve the best segmentation results compared with the state-of-the-art approaches.