论文标题

通过深层神经网络预测连续分解

Predicting continuum breakdown with deep neural networks

论文作者

Xiao, Tianbai, Schotthöfer, Steffen, Frank, Martin

论文摘要

气态流的多尺度性质在理论和数值分析方面构成了巨大的困难。 Boltzmann方程具有比流体动力方程更大的适用性,但由于模型中的自由度增加,需要明显更多的计算资源。混合流体流体流动求解器在多尺度流量的研究中的成功取决于流动状态的准确预测。在本文中,我们借鉴了机器学习中的二元分类,并提出了第一个基于局部流动条件的神经网络分类器,以检测近平衡和非平衡流程。与连续分解的经典半经验标准相比,当前方法提供了一个数据驱动的替代方案,其中参数化的隐式函数通过Boltzmann方程的解决方案训练。地面真实标签是从粒子分布函数的偏差和基于Chapman-Enskog Ansatz的近似值中得出的。因此,标准中不需要可调参数。在Boltzmann Moment System的熵闭合之后,制定了一种数据生成训练和测试集的数据生成策略。数值分析显示了其优于基于模拟的采样的优势。混合玻尔兹曼 - 纳维尔 - 斯托克斯流量求解器相应地使用局部流程度的自适应分区构建。提供了数值实验,包括一维黎曼问题,剪切流层和圆形圆柱周围的高超音速流,以验证当前的方案,以模拟跨尺度和非平衡流动物理。与半经验标准和基准结果的定量比较证明了当前的神经分类器能够准确预测连续性崩溃的能力。

The multi-scale nature of gaseous flows poses tremendous difficulties for theoretical and numerical analysis. The Boltzmann equation, while possessing a wider applicability than hydrodynamic equations, requires significantly more computational resources due to the increased degrees of freedom in the model. The success of a hybrid fluid-kinetic flow solver for the study of multi-scale flows relies on accurate prediction of flow regimes. In this paper, we draw on binary classification in machine learning and propose the first neural network classifier to detect near-equilibrium and non-equilibrium flow regimes based on local flow conditions. Compared with classical semi-empirical criteria of continuum breakdown, the current method provides a data-driven alternative where the parameterized implicit function is trained by solutions of the Boltzmann equation. The ground-truth labels are derived rigorously from the deviation of particle distribution functions and the approximations based on the Chapman-Enskog ansatz. Therefore, no tunable parameter is needed in the criterion. Following the entropy closure of the Boltzmann moment system, a data generation strategy is developed to produce training and test sets. Numerical analysis shows its superiority over simulation-based samplings. A hybrid Boltzmann-Navier-Stokes flow solver is built correspondingly with adaptive partition of local flow regimes. Numerical experiments including one-dimensional Riemann problem, shear flow layer and hypersonic flow around circular cylinder are presented to validate the current scheme for simulating cross-scale and non-equilibrium flow physics. The quantitative comparison with a semi-empirical criterion and benchmark results demonstrates the capability of the current neural classifier to accurately predict continuum breakdown.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源