论文标题
对称函数和组合理论序列的自然框架
Symmetric functions and a natural framework for combinatorial and number theoretic sequences
论文作者
论文摘要
I. MacDonald认为的某些功率序列的某些三元组为许多组合和数理论序列提供了自然框架,例如Stirling,Bernoulli以及不同种类的谐波数和分区。这种三重组中的功率序列与来自对称函数理论的身份紧密相关。我们扩展了Z-H的工作。 Sun开发了类似的想法和MacDonald,揭示了这些三元组的更多结构。 De Moivre多项式在这项研究中起着关键作用。
Certain triples of power series, considered by I. Macdonald, give a natural framework for many combinatorial and number theoretic sequences, such as the Stirling, Bernoulli and harmonic numbers and partitions of different kinds. The power series in such a triple are closely linked by identities coming from the theory of symmetric functions. We extend the work of Z-H. Sun, who developed similar ideas, and Macdonald, revealing more of the structure of these triples. De Moivre polynomials play a key role in this study.