论文标题
发动机喂养的Kilonovae(Mergernovae) - I.动力学进化和能量注入 /加热效率
Engine-fed Kilonovae (Mergernovae) -- I. Dynamical Evolution and Energy Injection / Heating Efficiencies
论文作者
论文摘要
二元中子星合并预计将与KilOnova相关联,该基洛诺娃(Kilonova)的瞬态光发射由中子富含中子的射出的放射性衰变提供动力。如果合并后残留物是长寿的中子恒星,则可以对喷射的额外注入能量。在系列的第一篇论文中,我们详细研究了发动机喂养的Kilonova(Mergernova)喷射的动态演化。我们通过采用修改的机械爆炸模型对问题进行半分析研究,该模型可以在po频畅通的流量和非磁性大量喷射中发挥相互作用。发动机打开后不久,一对震动会感到兴奋。反向冲击迅速到达风加速区并消失(几秒钟内),而前向冲击很快就会从射流中爆发(以$ 10^2 $ - $ 10^3 $秒为单位),并继续在周围的星际介质中传播。从发动机中注入BlastWave的大多数能量被存储为磁能和动能。内部能量分数为$ f _ {\ rm int} <0.3 $,对于等于$ 10^{ - 3} m _ {\ odot} $的弹出质量。总体而言,能源注入效率$ξ$最多为$ \ sim 0.6 $,以后的时间可能小至$ \ sim 0.04 $。与以前的假设相反,有效的加热仅在前向冲击以加热效率$ξ_t\ sim(0.006-0.3)$中突破弹出之前发生,后者迅速下降至$ \ sim 0 $之后。发动机喂养的Kilonova Lightcurves将在Paper II中仔细研究。
A binary neutron star merger is expected to be associated by a kilonova, transient optical emission powered by radioactive decay of the neutron-rich ejecta. If the post-merger remnant is a long-lived neutron star, additional energy injection to the ejecta is possible. In this first paper of a series, we study the dynamical evolution of the engine-fed kilonova (mergernova) ejecta in detail. We perform a semi-analytical study of the problem by adopting a modified mechanical blastwave model that invokes interaction between a Poynting-flux-dominated flow and a non-magnetized massive ejecta. Shortly after the engine is turned on, a pair of shocks would be excited. The reverse shock quickly reaches the wind-acceleration region and disappears (in a few seconds), whereas the forward shock soon breaks out from the ejecta (in $10^2$ - $10^3$ seconds) and continues to propagate in the surrounding interstellar medium. Most of the energy injected into the blastwave from the engine is stored as magnetic energy and kinetic energy. The internal energy fraction is $f_{\rm int} < 0.3$ for an ejecta mass equal to $10^{-3}M_{\odot}$. Overall, the energy injecting efficiency $ξ$ is at most $\sim 0.6$ and can be as small as $\sim 0.04$ at later times. Contrary to the previous assumption, efficient heating only happens before the forward shock breaks out of the ejecta with a heating efficiency $ξ_t \sim (0.006 - 0.3)$, which rapidly drops to $\sim 0$ afterwards. The engine-fed kilonova lightcurves will be carefully studied in Paper II.